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Abstract

We study the problem of allocating a bundle of non-disposable, infinitely divisible commodities

among a group of agents with multi-dimensional single-peaked preferences, working with several

definitions which generalize peak-separable single-peakedness, a concept that has been considered

by previous writers. We establish conditions under which one-dimensional rules, most notably,

the uniform rule, can be extended to that setting and conditions under which single-valuedness is

preserved. Also, weakening one of the two requirements of peak-separable single-peakedness at a

time, we identify four maximal domains of preferences for commodity-wise same-sidedness, no-envy

(and equal treatment of equals in physical terms) and strategy-proofness.
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1 Introduction

The problem of allocating a social endowment of an infinitely divisible good among agents with

single-peaked preferences has been the object of considerable attention. A number of rules can be

defined for that purpose, but a particular rule has been found to be central from the viewpoint of

incentives as well as from various normative viewpoints. Thus rule, known as the “uniform rule”

(Bénassy, 1982), has indeed been characterized in many different ways, starting with Sprumont

(1991). (See Thomson (2017) for a survey of these results.)

We consider a multi-commodity generalization of the problem, for which a natural extension of

the notion of single-peakedness has been proposed (Amorós, 1999, 2002; Anno and Sasaki, 2009;

Adachi, 2010; Morimoto, Serizawa, and Ching, 2013). According to this definition, (i) keeping fixed

the consumptions of all commodities except one, single-peakedness in the usual sense holds with

respect to the last commodity; moreover, (ii) the maximizer of this induced relation is independent

of the consumptions of the other commodities. We call such preferences peak-separable single-

peaked.1 Also, we refer to requirement (i) as condition SP (for “single-peaked”) and to requirement

(ii) as condition C (for “constant peak”). The various rules that have been introduced in the one-

commodity case can be easily extended to this domain. It suffices to apply them commodity by

commodity. Characterizations of an extension of the uniform rule obtained in this manner, on the

basis of a list of axioms parallel to the list shown by Sprumont (1991) and Ching (1994) to lead to

it in the one-commodity case, have also been established (Amorós, 2002; Adachi, 2010; Morimoto,

Serizawa, and Ching, 2013).

Our goal is to explore how far one can go from this domain without compromising the existence

of rules satisfying the strategic properties that the commodity-wise uniform rule enjoys. Because

commodity-wise peak-separable single-peakedness is the conjunction of two requirements, we break

down our query into two parts, each corresponding to dropping one of the two requirements. A

preliminary question we need to address, however, is whether “the one-commodity uniform rule”

can be meaningfully adapted to the domains enlarged in this manner, and, when a “commodity-wise

uniform solution” can be defined, whether this solution inherits the properties of its one-dimensional

origin.

First, we show that if, with condition C still in place, condition SP is weakened so as to allow for

what we call “one-dimensional weakly single-plateaued preferences", a commodity-wise uniform rule

can indeed be defined and that this mapping is “essentially single-valued” (that is, single-valued

in welfare terms). It violates “efficiency” but it satisfies “commodity-wise same-sidedness”, the

requirement that for each commodity separately, either each agent is assigned at most as much as

his peak amount of that commodity, or each agent is assigned at least as much as his peak amount,

1Serizawa refers to them as “cross-shaped”.
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a condition that is necessary for efficiency (and equivalent to efficiency in the one-commodity case).

It also satisfies “equal treatment of equals in physical terms" (and therefore, in welfare terms), the

requirement that two agents with the same preferences be assigned equal bundles (and bundles

that they find indifferent according to their common preferences), “no-envy”, the requirement that

each agent find his assignment at least as desirable as anyone else’s assignment, and “strategy-

proofness”, the requirement that in the direct revelation game form associated with the rule, no

agent ever find it beneficial to misrepresent his preferences.

On the other hand, if only condition C is dropped, we obtain commodity-wise single-peaked

preferences. On this extended domain, the commodity-wise uniform solution is well defined (The-

orem 1), but it is not single-valued (nor even essentially single-valued). However, we identify a

sufficient condition on preferences for single-valuedness to hold. This condition is a bound on the

absolute value of the slopes of the loci of maximizers along affine sets parallel to axes (Theorem

2). Unfortunately, even though single-valuedness is recovered, many interesting properties satisfied

by the one-dimensional uniform rule are lost. Notably, the commodity-wise uniform rule violates

efficiency, no-envy, the equal-division lower bound, and strategy-proofness.

The next natural question is whether these failures are unique to the commodity-wise uniform

rule. And if not, how much can the domain of peak-separable single-peaked preferences be enlarged

without the existence of a rule satisfying a list of axioms of our choice being compromised? Again,

with conditions SP and C in mind, we pursue this question in two directions. We show that

if condition SP is maintained, then the domain of peak-separable single-peaked preferences is a

maximal domain on which commodity-wise same-sidedness, no-envy, and strategy-proofness are

compatible (Theorem 4). On the other hand, if condition C is kept, then the domain of self-

explanatory plateau-separable weakly single-plateaued preferences is a maximal domain on which

these properties are compatible (Theorem 6). For two agents, even stronger conclusions can be

reached (Theorems 3 and 5).

Our results imply that the domain on which Amorós (2002), Adachi (2010), and Morimoto,

Serizawa, and Ching (2013) characterize the commodity-wise uniform rule is the largest domain on

which their axioms are compatible. Our maximality results (Theorems 3 and 4), which pertain to

weakening condition C, but not SP, show that the invariance of peak amounts with respect to the

consumption level of all but one commodity is critical in ensuring the existence of a rule satisfying

their axioms in that even the slightest departure from it yields an impossibility.

The remainder of the paper is organized as follows. In Section 2 we set up the model and define

various classes of preferences and axioms. In Section 3 we generalize the one-dimensional uniform

rule for our model and study its properties. In Section 4 we present our maximal domain results,

and in Section 5 we prove the theorems.
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2 The Model

Let L ≡ {1, . . . , ℓ̄} be a set of (infinitely divisible) commodities, and N ≡ {1, ..., n} be a set

of agents. For each i ∈ N , agent i’s consumption space is RL
+, and agent i is equipped with a

complete, transitive, and continuous preference relation Ri over RL
+. Let Pi and Ii denote the

strict preference and indifference relations associated with Ri. Let R be our generic notation for

a class of such preferences. Let R ≡ (Ri)i∈N ∈ RN be a profile of preferences.

There is a social endowment Ω ≡ (Ω1, ...,Ωℓ̄) ∈ RL
+ to be fully allocated among the members

of N . Altogether, an economy is a pair (R,Ω) ∈ RN ×Rℓ
+. A (feasible) allocation for (R,Ω) is a

vector x ≡ (x1, ..., xn) ∈ RLN
+ , where for each i ∈ N , xi ≡ (xi1, ..., xiℓ̄) ∈ RL

+ is agent i’s assignment,

and for each ℓ ∈ L,
∑

i∈N xiℓ = Ωℓ. Let X be the set of all allocations for (R,Ω). A rule defined

on RN × RL
+ is a mapping that associates with each economy (R,Ω) in its domain an allocation

for (R,Ω). Our generic notation for a rule is the letter ϕ.

2.1 Preferences

Next, we introduce various classes of preferences, first in the one-commodity case (i.e., when ℓ̄ = 1).

A preference relation R0 ∈ R is one-dimensional single-plateaued if there are p(R0), p̄(R0) ∈
R+ with p(R0) ≤ p̄(R0), such that (i) for each pair x0, x

′
0 ∈ R+ such that either x′

0 < x0 ≤ p(R0)

or p̄(R0) ≤ x0 < x′
0, we have x0 P0 x

′
0; and (ii) for each pair x0, x

′
0 ∈ R+ such that p(R0) ≤ x0 ≤

x′
0 ≤ p̄(R0), we have x0 I0 x

′
0. Also, a preference relation R0 ∈ R is one-dimensional weakly

single-plateaued if there are p(R0), p̄(R0) ∈ R+ with p(R0) ≤ p̄(R0), such that (i) for each pair

x0, x
′
0 ∈ R+ such that either x′

0 < x0 ≤ p(R0) or p̄(R0) ≤ x0 < x′
0, we have x0 R0 x

′
0; and (ii) for

each pair x0, x
′
0 ∈ R+ such that p(R0) ≤ x0 ≤ x′

0 ≤ p̄(R0), we have x0 I0 x
′
0; (iii) [p(R0), p̄(R0)]

is the set of maximizers of R0 on R+. The interval p(R0) ≡ [p(R0), p̄(R0)] is called the plateau

of R0. Starting from these two definitions, if p(R0) = p̄(R0), we say that R0 is one-dimensional

single-peaked and one-dimensional weakly single-peaked, respectively, and we call p(R0)

the peak amount of R0. In the latter case, we abuse notation slightly and treat p(R0) as a point

in R+. Let R1.sg.pk be the class of one-dimensional single-peaked preferences.

Weakly single-plateaued preferences are more general than single-plateaued preferences in that

non-degenerate intervals of indifferent points (ledges) are permitted to the left or right of plateaus:

A numerical representation of a single-plateaued relation is strictly monotonic increasing to the

left of the plateau and strictly monotonic decreasing to the right of the plateau; a representation

of a weakly single-plateaued relation may only be weakly monotonic in these intervals.

We now turn to the multi-commodity case, when ℓ̄ ≥ 2. Multi-dimensional single-peakedness

can be defined in several different ways, reviewed in Thomson (2010). We start with the definition
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Figure 1: Generalizing single-peakedness of a preference relation to a two-dimensional Euclidean

space: “commodity-wise single-peakedness”. (a) Along each horizontal line and along each vertical line,

preferences are one-dimensional single-peaked. Direction of increasing preferences is indicated by the arrows.

Indifferent points are denoted by the same letter, with and without a prime. (b) The curve v-v is the locus of

the maximizer of the relation along vertical lines and the curve h-h is the locus of the maximizer of the relation

along horizontal lines. Upper contour sets need not be convex although they are in this example.

that has been studied the most.

Peak-separable single-peakedness: For each ℓ ∈ L, there is pℓ(R0) ∈ R
{ℓ}
+ such that for each

x−ℓ ∈ R
L\{ℓ}
+ , the restriction of R0 to the set {(xℓ, x−ℓ) : xℓ ∈ R

{ℓ}
+ } is one-dimensional single-peaked

with its peak amount equal to pℓ(R0).

Let Rpk.sep−sg.pk denote the class of these preferences, and for each R0 ∈ Rpk.sep−sg.pk, let

p(R0) ≡ (pℓ(R0))ℓ∈L. The requirement of peak-separability single-peakedness has two parts: (i)

the restriction of R0 to each affine set {(xℓ, x−ℓ) : xℓ ∈ R
{ℓ}
+ } is one-dimensional single-peaked; and

(ii) as we vary x−ℓ ∈ R
L\{ℓ}
+ , the peak amount of the relation restricted in this manner is constant

at pℓ(R0). We refer to condition (i) as SP (for “single-peaked”) and to condition (ii) as C (for

“constant peak”). Condition SP pertains to the commodity-wise property of preferences whereas

condition C pertains to the peak–or more generally, plateau–property.

Since peak-separable single-peakedness is defined as the conjunction of two conditions, we may

inquire about the kind of preferences that are additionally permitted if we relax only one of them.

First, we relax C and maintain SP: keeping fixed an agent’s consumption level of all but one

commodity, his welfare is represented by a strictly quasi-concave, or equivalently single-peaked,

function of the last commodity; however, the consumption of the last commodity that yields the

maxima (or peak amounts) of those functions may change as we vary the consumption level of the

other commodities.

Commodity-wise single-peakedness: For each ℓ ∈ L and each x−ℓ ∈ R
L\{ℓ}
+ , the restriction

of R0 to the set {(xℓ, x−ℓ) : xℓ ∈ R
{ℓ}
+ } is one-dimensional single-peaked.
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Let Rsg.pk denote the class of all commodity-wise single-peaked preferences. If R0 ∈ Rsg.pk,

then to each ℓ ∈ L, there corresponds a locus of peak amounts, namely the graph of the function

pℓ(·|R0) : R
L\{ℓ}
+ → R

{ℓ}
+ . In the case of two commodities, there are two such loci, a locus v − v of

peak amounts on vertical lines, and a locus h−h of peaks on horizontal lines. Let v(·|R0) : R
{1}
+ →

R+ and h(·|R0) : R
{2}
+ → R+ be parameterizations of those loci. Since Rpk.sep−sg.pk ( Rsg.pk,

we treat R0 ∈ Rpk.sep−sg.pk as a preference relation in Rsg.pk, so that for each ℓ ∈ L and each

x−ℓ ∈ R
L\{ℓ}
+ , pℓ(x−ℓ|R0) = pℓ(R0).

Figure 1b shows the loci h-h and v-v for an example. These loci can have very general shapes.

However, they can only cross at the global maximizer of the relation. Also, if preferences are

smooth, they cannot meet anywhere else. If kinks in indifference curves are allowed, they can meet

at other points. In fact, there are preferences for which the two loci coincide (as shown in Figure 5

below, whose main purpose is to illustrate a different point). Figure 1b shows an example in which

the upper contour sets are convex but they need not be. Indeed, this definition does not imply

convexity of preferences.

Next, we generalize peak-separable single-peakedness by relaxing condition SP while main-

taining C: keeping fixed an agent’s consumption of all commodities but but one, his welfare is

represented by a single-plateaued function of the last commodity; moreover, the consumption lev-

els of the last commodity that yields the maxima (or plateaus) of those functions is independent

of the consumption level of the other commodities.

Plateau-separable single-plateauedness: For each ℓ ∈ L, there are p
ℓ
(R0), p̄ℓ(R0) ∈ R

{ℓ}
+ , with

p
ℓ
(R0) ≤ p̄ℓ(R0), such that for each x−ℓ ∈ R

L\{ℓ}
+ , the restriction of R0 to the set {(xℓ, x−ℓ) : xℓ ∈

R
{ℓ}
+ } is one-dimensional single-plateaued with its plateau equal to [p

ℓ
(R0), p̄ℓ(R0)].

On each affine set {(xℓ, x−ℓ) : xℓ ∈ R
{ℓ}
+ }, plateau-separable single-plateauedness allows indiffer-

ence only on the plateau; to the left and right of the plateau, welfare is increasing and decreasing,

respectively. Weakening strict monotonicity to weak monotonicity yields plateau-separable weak

single-plateauedness.

Plateau-separable weak single-plateauedness: For each ℓ ∈ L, there are p
ℓ
(R0), p̄ℓ(R0) ∈

R
{ℓ}
+ , with p

ℓ
(R0) ≤ p̄ℓ(R0), such that for each x−ℓ ∈ R

L\{ℓ}
+ , the restriction of R0 to the set

{(xℓ, x−ℓ) : xℓ ∈ R
{ℓ}
+ } is one-dimensional weakly single-plateaued with its plateau equal to [p

ℓ
(R0), p̄ℓ(R0)].

Let Rpl.sep−w.sg.pl denote the class of plateau-separable weakly single-plateaued preferences.

Such preferences retain the following commodity-wise property of peak-separable single-peakedness:

for each ℓ ∈ K and each x−ℓ ∈ RK\ℓ, upper contour sets of the restriction of R0 to affine

sets {(xℓ, x−ℓ) : xℓ ∈ R
{ℓ}
+ } are convex. Thus, to further extend plateau-separable weak single-

plateauedness, we give up on commodity-wise convexity as well, and only require that plateaus be
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invariant with respect to the consumption level of ℓ̄− 1 commodities.

Plateau-separability: For each ℓ ∈ L, there are p
ℓ
(R0), p̄ℓ(R0) ∈ R

{ℓ}
+ , with p

ℓ
(R0) ≤ p̄ℓ(R0),

such that for each x−ℓ ∈ R
L\{ℓ}
+ , [p

ℓ
(R0), p̄ℓ(R0)] is the set of maximizers of the restriction of R0 to

the set {(xℓ, x−ℓ) : xℓ ∈ R
{ℓ}
+ }.

Denote by Rpl.sep the class of plateau-separable preferences. For each R0 ∈ Rpl.sep and each

ℓ ∈ L, let pℓ(R0) ≡ [p
ℓ
(R0), p̄ℓ(R0)], and p(R0) ≡ ×ℓ∈Lpℓ(R0). Figure 2 presents, in a schematic

way, the classes of preferences introduced so far. On the horizontal axis we indicate the plateau

(peak) property of preferences, and on the vertical axis the commodity-wise property. In this

coordinate system, the greater the abscissa or ordinate, the weaker the corresponding property.

For instance, weakening condition SP while keeping C amounts to moving vertically from peak-

separable single-peakedness, and varying the degree of that weakening, we obtain, in succession,

plateau-separable single-plateauedness, plateau-separable weak single-plateauedness, and plateau-

separability.

We introduce further notation. For each R0 ∈ R and each ℓ ∈ L, let p
ℓ
(·|R0) : R

L\{ℓ}
+ →

R
{ℓ}
+ ∪{∞} and p̄ℓ(·|R0) : R

L\{ℓ}
+ → R

{ℓ}
+ ∪{∞} be functions, with p

ℓ
(·|R0) ≤ p̄ℓ(·|R0), such that

for each x−ℓ ∈ R
L\{ℓ}
+ , the interval [p

ℓ
(x−ℓ|R0), p̄ℓ(x−ℓ|R0)] denotes the set of maximizers of R0 in

the one-dimensional set {(xℓ, x−ℓ) : xℓ ∈ R
{ℓ}
+ }. This notation is consistent, although with a slight

abuse, with that we use for preferences in Rsg.pk and Rpl.sep: If R0 ∈ Rsg.pk, then p
ℓ
(x−ℓ|R0) =

p̄ℓ(x−ℓ|R0) = p(x−ℓ|R0); if R0 ∈ Rpl.sep, then p
ℓ
(x−ℓ|R0) = p

ℓ
(R0) and p̄(x−ℓ|R0) = p̄ℓ(R0).

To distinguish the model from its multi-commodity counterpart, we qualify it of “one-dimensional”.

2.2 Axioms

In this section, we introduce the axioms. Let ϕ : RN × RL
+ → RLN

+ be a rule.

Let (R,Ω) ∈ RN × RL
+ and let x, y ∈ RLN

+ be allocations for (R,Ω). Say that x Pareto

dominates y if (i) for each i ∈ N , xi Ri yi, and (ii) there is i ∈ N such that xi Pi yi. Our first

axiom says that the rule should never choose an allocation that is Pareto dominated by some other

allocation.

Efficiency: For each (R,Ω) ∈ RN × RL
+, there is no allocation that Pareto dominates ϕ(R,Ω).

In the one-commodity case, efficiency reduces to the following: an allocation is same-sided if

(i) each agent’s assignment is at most as large as his peak amount; or (ii) each agent’s assignment

is at least as large as his peak amount. For two or more commodities, we may apply this require-

ment commodity-wise, requiring same-sidedness for each commodity separately. The condition so

obtained is necessary for efficiency, but not sufficient.
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single-peaked

Figure 2: Various classes of preferences. The horizontal axis measures the plateau (peak) property of

preferences, and the vertical axis the commodity-wise property. In the coordinate system so defined, the greater

the abscissa or ordinate of preferences, the weaker the corresponding property.
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Commodity-wise same-sidedness: For each (R,Ω) ∈ RN × RL
+ and each ℓ ∈ L, one of the

following holds: (i) for each i ∈ N , ϕiℓ(R,Ω) ≤ p
ℓ
(xi,−ℓ|Ri); (ii) for each i ∈ N , p

ℓ
(xi,−ℓ|Ri) ≤

ϕiℓ(R,Ω) ≤ p̄ℓ(xi,−ℓ|Ri); or (iii) for each i ∈ N , ϕiℓ(R,Ω) ≥ p̄ℓ(xi,−ℓ|Ri).

Next are fairness requirements. First, agents with the same preferences be assigned bundles

that they find indifferent according to their common preferences.

Equal treatment of equals in welfare terms: For each (R,Ω) ∈ RN × RL
+ and each pair

i, j ∈ N , if Ri = Rj , then ϕi(R,Ω) Ii ϕj(R,Ω).

Alternatively, we could require that agents with the same preferences should be assigned the

same bundles.

Equal treatment of equals in physical terms: For each (R,Ω) ∈ RN ×RL
+ and each i, j ∈ N ,

if Ri = Rj , then ϕi(R,Ω) = ϕj(R,Ω).

Our next fairness concept allows us to compare how agents with difference preferences are

treated: no agent should prefer someone else’s assignment to his own (Foley, 1967).

No-envy: For each (R,Ω) ∈ RN × RL
+ and each i, j ∈ N , ϕi(R,Ω)Ri ϕj(R,Ω).

Clearly, each of equal treatment of equals in physical terms and no-envy implies equal treatment

of equals in welfare terms, but the converse is not true. Also, equal treatment of equals in physical

terms and no-envy are not logically related.

Finally, we consider a strategic requirement: no agent should ever be made better off by lying

about her preferences. More precisely, for each preference profile, in the direct revelation game

form associated with the rule, it is a weakly dominant strategy for each agent to report her true

preferences.

Strategy-proofness: For each (R,Ω) ∈ RN×RL
+, each i ∈ N , and each R′

i ∈ R, ϕi(R,Ω)Ri ϕi(R
′
i, R−i,Ω).

3 Generalization of the Uniform Rule

3.1 Existence

First, we address the issue of existence of commodity-wise uniform allocations. On the do-

main of plateau-separable preferences, these allocation are obtained by simply applying the one-

dimensional uniform rule commodity by commodity.

Commodity-wise uniform rule, U , on RN
pl.sep × RL

+: For each (R,Ω) ∈ RN
pl.sep × RL

+, each

9



ℓ ∈ L, and each i ∈ N ,

Uiℓ(R,Ω) =



















min{p
ℓ
(Ri), λℓ} if Ωℓ ≤

∑

i∈N p
ℓ
(Ri);

min{p
ℓ
(Ri) + λℓ, p̄ℓ(Ri)} if

∑

i∈N p
ℓ
(Ri) < Ωℓ ≤

∑

i∈N p̄ℓ(Ri);

max{λℓ, p̄ℓ(Ri)} otherwise,

where for each ℓ ∈ L, λℓ is chosen to satisfy
∑

i∈N Uiℓ(R,Ω) = Ωℓ.

The commodity-wise uniform rule is proposed by Amorós (2002) for peak-separable single-

peaked preferences. Our definition applies to a larger preference domain, namely, plateau-separable

preferences. When restricted to plateau-separable weakly single-plateaued preferences, the commodity-

wise uniform rule satisfies commodity-wise same-sidedness, equal treatment of equals in physical

(welfare) terms, no-envy, and strategy-proofness, but it violates efficiency ; we omit the simple

proofs of these facts.

Next, to define the commodity-wise uniform solution for commodity-wise single-peaked pref-

erences, we work with general one-dimensional rules and extend them to the multi-commodity

case. To that end, we describe the one-dimensional model briefly. This model is a special case

of the model introduced in Section 2, when ℓ̄ = 1. We require preferences to be one-dimensional

single-peaked, that is, to belong to R1.sg.pk.

For each R0 ∈ Rsg.pk, each ℓ ∈ L, and each aL\{ℓ} ∈ RL\{ℓ}, let R0|aL\{ℓ}
be the restriction of R0

to the affine set {(aℓ, aL\{ℓ}) ∈ RL
+ : aℓ ∈ R

{ℓ}
+ }. Since R0 ∈ Rsg.pk, R0|aL\{ℓ}

is one-dimensional

single-peaked, and therefore, p(R0|aL\{ℓ}
) denotes the amount of commodity ℓ that maximizes

R0|aL\{ℓ}
on R

{ℓ}
+ .

Let ϕ : RN
1.sg.pk×R+ → RN

+ be a one-dimensional rule. We now extend ϕ to the multi-commodity

model on the domain of commodity-wise single-peaked preferences.

Commodity-wise extension ϕcw of ϕ to RN
sg.pk × RL

+: For each (R,Ω) ∈ RN
sg.pk × RL

+ and

each x ∈ X, x ∈ ϕcw(R,Ω) if for each ℓ ∈ L, (xiℓ)i∈N = ϕ
(

(Ri|xiL\{ℓ}
)i∈N ,Ωℓ

)

.

Note that a commodity-wise extension is defined as a solution correspondence, because there

is no guarantee that it is single-valued. With regard to non-empty-valuedness, Theorem 1 below

provides a sufficient condition. As an application, the commodity-wise uniform solution,

U , is the commodity-wise extension of the one-dimensional uniform rule to RN
sg.pk × RL

+. For

each (R,Ω) ∈ RN
sg.pk × RL

+, an allocation x ∈ U(R,Ω) is called a commodity-wise uniform

allocation for (R,Ω). On subdomains on which single-valuedness holds, we refer to this mapping

as the commodity-wise uniform rule. The commodity-wise uniform rule or solution is defined

on two domains, namely RN
pl.sep × RL

+ and RN
sg.pk × RL

+, and one can easily check that the two

definitions coincide on their intersection.
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Figure 3: Defining the commodity-wise uniform rule on the commodity-wise single-peaked and peak-

separable domain. (a) Here, there is not enough of either commodity. Then, upper bounds λ1 and λ2 in R+

are chosen and each agent maximizes his preferences in the rectangle [0, λ1]× [0, λ2]. The bounds are specified

so that the sum of the maximizers equals the social endowment. (b) Here, there is too much of commodity 1

but not enough of commodity 2. Then, a lower bound λ1 is chosen for commodity 1 and an upper bound λ2 is

chosen for commodity 2: maximization takes place in the rectangle [λ1,∞]× [0, λ2]. Once again, the bounds

are specified so that the sum of the maximizers equals the social endowment.

Now we identify a property of a one-dimensional rule (not necessarily the uniform rule) that

ensures the non-empty-valuedness of its commodity-wise extension. It says that for each endow-

ment, if a sequence of profiles of preferences is such that its associated sequence of peak amounts

changes in a continuous manner, then so should the corresponding allocation.

Peak-continuity: For each (R,Ω) ∈ RN
1.sg.pk×R+ and each sequence of preference profiles {Rk}k∈N

in RN
1.sg.pk such that for each i ∈ N , limk→∞ p(Rk

i ) = p(Ri), limk→∞ ϕ(Rk,Ω) = ϕ(R,Ω).

Peak-continuity implies, in particular, “peak-onliness”, the requirement that a rule determine

an allocation based solely on the profile of peak amounts of preferences and the endowment. The

following theorem states that if a one-dimensional rule is peak-continuous, then on the domain of

commodity-wise single-peaked preferences, it has a well-defined commodity-wise extension. Be-

cause, for each commodity, an agent’s peak amount depends on his consumption of the other

commodities, proving existence requires invoking a fixed point argument.

Theorem 1. Let ϕ : RN
1.sg.pk×R+ be a peak-continuous one-dimensional rule. Then the commodity-

wise extension ϕcw of ϕ to RN
sg.pk × RL

+ is well-defined.

Proof. Let ϕ : RN
1.sg.pk × R+ be as in the theorem. Let (R,Ω) ∈ RN

sg.pk × RL
+ and x ∈ X. Let

ℓ ∈ L. For each i ∈ N and each ℓ ∈ L, treat p(Ri|.) as a function which maps each vector

aL\{ℓ} ∈ R
L\{ℓ}
+ to a point p(Ri|aL\{ℓ}

) ∈ R+. Since Ri is continuous, it follows from the Berge

maximum theorem that so is the function p(Ri|.). Thus, the function that associates with x the

11
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Figure 4: Defining the commodity-wise uniform rule for an economy with commodity-wise single-

peaked but not peak-separable preferences. The allocation z is a commodity-wise uniform allocation

for R. (a) Here, given the amounts consumed of commodity 2, there is not enough of commodity 1. For each

agent, we identify his most preferred amount of commodity 1 given his consumption of commodity 2. (b) Here,

given the amounts consumed of commodity 1, there is not enough of commodity 2.

vector yℓ ≡ ϕ(R1|x1L\{ℓ}
), · · · , p(Rn|xnL\{ℓ}

)) is continuous. This is true for each ℓ ∈ L. Thus,

the function that associates with x the vector y ≡ (yℓ)ℓ∈L is a continuous function from X into

itself. Further, the set X is a compact and convex subset of a Euclidean space. By the Brouwer

fixed point theorem, the function has at least one fixed point. Each fixed point is an element of

ϕcw(R,Ω)

Since the one-dimensional uniform rule is peak-continuous, a corollary to Theorem 1 is that

uniform allocations exist on RN
sg.pk × RL

+.

Corollary 1. Uniform allocations exist on RN
sg.pk × RL

+.

Figure 3 shows a commodity-wise uniform allocation for an economy with peak-separable single-

peaked preferences. It is obtained by simply applying the one-dimensional uniform rule commodity

by commodity. On the other hand, when peak-separability fails, identifying a uniform allocation

may not be so trivial. Figure 4 provides an example.

The literature on one-dimensional division problems offers a rich inventory of rules. Examples

are the following. The “proportional rule” chooses the allocation at which assignments are propor-

tional to peak amounts if at least one peak amount is positive and chooses equal division otherwise

(preferences are the same then, so this choice is natural). The “constrained equal-distance rule”

selects the efficient allocation at which the differences across agents between peak amount and

consumption are equal unless an agent consumes nothing, in which case the difference for him

could be smaller. The “constrained equal-preferred-sets rule” chooses the efficient allocation at

which the sizes of the agents’ upper contour sets at their assignments are equal, unless an agent

12
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Figure 5: Economies with multiple commodity-wise uniform allocations. In both examples, there are a

continuum of allocations satisfying the definition. (a) Here, loci h−h and v− v of each agent are confounded.

At each of the commodity-wise uniform allocations, and in each dimension, both agents are satiated. (b) Here,

loci h− h and v − v of each agent only meet at his global maximizer, so that his preferences can be specified

to be smooth.

consumes nothing, in which case the size of his upper contour set could be smaller (Thomson,

1994). The proportional rule is not peak-continuous because of the special case when all peak

amounts are zero, but a “symmetrized” variant of it, for which proportions are calculated from the

origin if there is not enough of the commodity and from the social endowment if there is too much

of the commodity (Thomson, 1994), is peak-continuous.

Because the constrained equal-distance and symmetrized proportional rules are peak-continuous,

we can apply Theorem 1 to conclude that their commodity-wise extensions are well-defined solu-

tions.

3.2 Uniqueness

Under peak separability, single-valuedness of commodity-wise extensions obviously holds. Without

that assumption, however, uniqueness is not guaranteed. Two types of economies with multiple

uniform allocations are shown in Figure 5. In panel (a), in each dimension, and for each amount of

one of the commodities, each agent is satiated at a point on the 45◦ line. Preferences are not differ-

entiable there. Panel (b) shows that multiplicity can occur with differentiable preferences. Indeed,

the panel only shows the loci of kinks, but preferences can be specified so as to be differentiable.

The question we address here is whether weaker assumptions than peak separability can be

identified under which uniqueness still holds. We provide a positive answer. By limiting the extent

to which the amount of each commodity that maximizes an agent’s preferences varies when his

consumptions of the other commodities vary, a contraction mapping theorem becomes applicable,

yielding uniqueness. It is natural to expect the absolute values of the slope of the loci of maximizers

13



to matter. A formal argument confirming this conjecture is presented next.

A preference relation R0 ∈ Rsg.pk is Lipschitz peak-continuous if there is c ∈ R+ such that

for each ℓ ∈ L and each pair x0L\{ℓ}, y0L\{ℓ} ∈ R
L\{ℓ}
+ ,

|pℓ(x0L\{ℓ}|R0)− pℓ(y0L\{ℓ}|R0)| ≤ c||x0L\{ℓ} − y0L\{ℓ}||. (1)

The infimum of the c’s satisfying Equation (1) is the Lipschitz constant for R0. Let Rsg.pk(c)

denote the subclass of Lipschitz peak-continuous preferences in Rsg.pk whose Lipschitz constant is

at most c.

Next is a requirement on one-dimensional rules. It says that a rule should respond to changes

in the profile of peak amounts of preferences in a Lipschitz continuous manner. A one-dimensional

rule ϕ : RN
1.sg.pk × R+ → RN

+ is Lipschitz peak-continuous if there is c ∈ R+ such that for each

R,R′ ∈ RN
1.sg.pk and Ω ∈ R+,

||ϕ(R,Ω)− ϕ(R′,Ω)|| ≤ c|| (p(Ri))i∈N − (p(R′
i))i∈N ||. (2)

The infimum of the c’s satisfying Equation ((2))is the Lipschitz constant for ϕ. Note that

if ϕ is Lipschitz peak-continuous, then it is peak-continuous. Also, if ϕ is Lipschitz peak-continuous

with Lipschitz constant c = 0, then for each Ω ∈ R+, ϕ(·,Ω) : RN
1.sg.pk → RN

+ is a constant rule so

that single-valuedness of the commodity-wise extension ϕcw of ϕ to RN
sg.pk × RL

+ follows trivially.

In what follows, we discuss only the case c > 0. Here is our uniqueness result:

Theorem 2. Let c ∈ R++ and let ϕ : RN
1.sg.pk × R+ → RN

+ be a Lipschitz peak-continuous one-

dimensional rule with Lipschitz constant c. Let R∗ ≡
⋃

c′ Rsg.pk(c
′), where c′ ∈ [0, 1

c(ℓ̄−1)
[. Then the

commodity-wise extension ϕcw of ϕ to RN
sg.pk × RL

+ is single-valued on the subdomain RN
∗ × RL

+.

Proof. Let c ∈ R++, ϕ, and R∗ be as in the theorem. Let (R,Ω) ∈ RN
∗ × RL

+. Then there is

c′ ∈ [0, 1
c(ℓ̄−1)

[ such that R ∈ Rsg.pk(c
′)N . Define the mapping T : RLN

+ → RLN
+ as follows: for each

x ∈ RLN
+ , let T (x) = y, where for each ℓ ∈ L, yℓ ≡ ϕ(R1|x1L\{ℓ}

, · · · , Rn|xnL\{ℓ}
,Ωℓ) ∈ RN

+ . Then

ϕcw(R,Ω) is the set of fixed points of T . Thus, if we show that T is a contraction mapping, then

by the Banach fixed point theorem, it has a unique fixed point and ϕcw is single-valued.

To show that T is a contraction, let x, w ∈ RLN
+ , y ≡ T (x) and z ≡ T (w). Observe that

||T (x)− T (w)|| =
[

∑

i∈N

∑

ℓ∈L
(yiℓ − ziℓ)

2

]
1

2

=

[

∑

ℓ∈L

∑

i∈N
(yiℓ − ziℓ)

2

]
1

2

(3)

and that for each ℓ ∈ L,

14



∑

i∈N
(yiℓ − ziℓ)

2 =
∥

∥

∥
ϕ
(

R1|x1L\{ℓ}
, · · · , Rn|xnL\{ℓ}

,Ωℓ

)

− ϕ
(

R1|w1L\{ℓ}
, · · · , Rn|wnL\{ℓ}

,Ωℓ

)∥

∥

∥

2

≤ c2
∥

∥

∥

(

p(Ri|xiL\{ℓ}
)
)

i∈N
−

(

p(Ri|wiL\{ℓ}
)
)

i∈N

∥

∥

∥

2

= c2
∥

∥

∥

(

pℓ(xiL\{ℓ}|Ri)
)

i∈N −
(

pℓ(wiL\{ℓ}|Ri)
)

i∈N

∥

∥

∥

2

= c2
∑

i∈N

[

pℓ(xiL\{ℓ}|Ri)− (pℓ(wiL\{ℓ}|Ri)
]2

≤ c2c′2
∑

i∈N
||xiL\{ℓ} − wiL\{ℓ}||2,

where the first inequality holds because the Lipschitz constant for ϕ is c, and the last one because

R ∈ Rsg.pk(c
′)N . Thus, equation (3) leads to

||T (x)− T (w)|| ≤ cc′

[

∑

ℓ∈L

∑

i∈N
||xiL\{ℓ} − wiL\{ℓ}||2

]
1

2

= cc′(ℓ̄− 1)||x− w||;

that is, T is a contraction with modulus β ≡ cc′(ℓ̄− 1) < 1.

With Theorem 2 at hand, identifying a subdomain on which the commodity-wise extension of

the one-dimensional uniform rule is single-valued amounts to finding the Lipschitz constant for the

underlying one-dimensional rule. The next proposition shows that the Lipschitz constant for the

one-dimensional uniform rule is at most
√
n.

Proposition 1. The Lipschitz constant for the one-dimensional uniform rule is at most
√
n.

Proof. Let V : RN
1.sg.pk × R+ → RN

+ be the one-dimensional uniform rule.

Step 1: Let R,R′ ∈ RN
1.sg.pk and Ω ∈ R+. If there is i ∈ N such that Ri 6= R′

i and R−i = R′
−i,

then ||V (R)− V (R′)|| ≤ √
n|p(Ri)− p(R′

i)|.
Note that |Vi(R)− Vi(R

′)| ≤ |p(Ri)− p(R′
i)| and that for each j ∈ N\{i}, |Vj(R)− Vj(R

′)| ≤
|p(Ri)− p(R′

i)|. Thus, ||V (R)− V (R′)|| ≤ √
n|p(Ri)− p(R′

i)|.

Step 2: Let R,R′ ∈ RN
1.sg.pk and Ω ∈ R+. Then ||V (R)−V (R′)|| ≤ √

n||(p(Ri))i∈N − (p(R′
i))i∈N ||.

Let R0 ≡ R, and for each k ∈ {1, · · · , n}, let Rk ∈ RN
1.sg.pk be the profile obtained from

Rk−1 by replacing Rk−1
k by R′

k; i.e., R1 ≡ (R′
1, R2, · · · , Rn), R2 ≡ (R′

1, R
′
2, R3, · · · , Rn), R3 ≡

(R′
1, R

′
2, R

′
3, R4, · · · , Rn), · · · , Rn ≡ R′. Then by Step 1, for each k ∈ {1, · · · , n}, ||V (Rk−1) −
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V (Rk)|| ≤ √
n|p(Rk)− p(R′

k)|. Then

||V (R)− V (R′)|| ≤
∑

k∈{1,··· ,n}
||V (Rk−1)− V (Rk)||

≤
∑

k∈{1,··· ,n}

√
n|p(Rk)− p(R′

k)|

=
√
n||(p(Ri))i∈N − (p(R′

i))i∈N ||.

Combining Theorem 2 and Proposition 1 gives a subdomain on which the commodity-wise

uniform solution is single-valued.

Corollary 2. Let R∗ ≡ ⋃

c′ Rsg.pk(c
′), where c′ ∈ [0, 1√

n(ℓ̄−1)
[. Then the commodity-wise uniform

solution U : RN
sg.pk × RL

+ ⇒ RLN
+ is single-valued on the subdomain RN

∗ × RL
+.

Remark 1. The condition defining the subdomain identified in Corollary 2 is only sufficient for

single-valuedness, and there are two reasons why it is not necessity. First, Theorem 2 is proved by

appealing to the Banach fixed point theorem, which is a sufficient, but not necessary, condition

for mappings to have a unique fixed point. Second, Proposition 1 provides an upper bound on

the Lipschitz constant for the one-dimensional uniform rule, but the Lipschitz constant can indeed

be smaller than the bound, in which case the subdomain in Corollary 2 may be further enlarged

without compromising single-valuedness. With regard to the second reason, we conjecture that the

Lipschitz constant for the one-dimensional uniform rule is smaller than
√
n because the proof of

Proposition 1 does not rely heavily on how the rule in particular behaves. In fact, if a peak-only one-

dimensional rule ϕ satisfies the following solidarity property, then it is Lipschitz peak-continuous

with Lipschitz constant at most
√
n: when agent i changes his preferences from Ri to R′

i, his

assignment changes at most by the difference between the two peak amounts and so does the

assignment for each other agent.2 The constrained equal distance and symmetrized proportional

rules satisfy this property. △

3.3 Normative and Strategic Properties

The next question is what properties the commodity-wise uniform solution, or rule when single-

valued, inherits from the one-dimensional uniform rule. We know that efficiency is lost, although

commodity-wise same-sidedness is preserved.

2Formally, this property can be stated as follows: for each (R,Ω) ∈ RN
1.sg.pk × R+, each i ∈ N , and each R′

i ∈
R1.sg.pk, (i) |ϕi(R,Ω)−ϕi(R

′
i, R−i,Ω)| ≤ |p(Ri)− p(R′

i)| and (ii) for each j ∈ N\{i}, |ϕj(R,Ω)−ϕj(R
′
i, R−i,Ω)| ≤

|p(Ri)− p(R′
i)|.
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Figure 6: Without peak-separability, a commodity-wise uniform allocation may not be envy-free

and it may not meet the individual-endowments lower bounds. The bundle z1 has the property that

keeping agent 1’s consumption of commodity 2 fixed at y1, agent 1 maximizes his preferences with respect to

commodity 1 at x1 and conversely. The same is true of the other agent. Yet, z2 does not maximize R2 over a

product of intervals of the form [λ1,M1]× [0, λ2]. At z, agent 1 envies agent 2. Also, each agent would prefer

the point of equal division to his assignment.

Whether or not uniform allocations are envy-free and whether they meet the equal-division

lower bound depends on the range of permissible preferences. Figure 6 represents an economy in

which both the no-envy and the equal-division lower bound properties are violated. Note that

agent 2’s indifference curve through his assignment has a kink at that point. Under smoothness,

this would not occur. Alternatively, if the two loci meet only at the global maximizer, the double

maximization defining the uniform allocation can occur at a point in the relative interior of a

budget set only if this point is the global maximizer of the relation. For agents maximizing on

a common budget set, no-envy is automatically met and if the budget set is convex, so is the

equal-division lower bound.

Under peak separability, it is clear that one-sided resource-monotonicity, one-sided population-

monotonicity, and one-sided welfare-domination under preference-replacement hold, because the

one-dimensional uniform rule has these properties. Consistency and its converse hold whether or

not peak separability is imposed.3

Concerning strategic issues, we have the following. Under peak separability, attainable sets

are products of intervals and strategy-proofness holds (Amorós, 2002; Anno and Sasaki, 2009;

Morimoto, Serizawa, and Ching, 2013). Without peak separability, this is not true anymore. In

3The first three properties are solidarity properties pertaining to changes in various parameters of the problem.
Resource-monotonicity says that if the endowment varies, the welfare of all agents should be affected in the same
direction. The other two are similar requirements pertaining to changes in population or in the preferences of some
agents. The “one-sided” prefix limits the extent of the change. It says that the direction of the inequality between
endowment and sum of peak amounts should not be reversed. Consistency says that the desirability of an allocation
should not be affected by the departure of some agents with their assignments: in the “reduced economies" in which
the amount to divide is what remains of the social endowment, each of the remaining agents should be assigned the
same amount as he was initially. Converse consistency says that the desirability of an allocation for some economy
can be deduced from the desirability of all of its restrictions to the two-agent reduced economies associated with it.
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fact, strategy-proofness fails in that case. Moreover, any departure from peak separability leads to

a violation of this property, as shown next.

4 Maximal Domain Results

Next, we define the notion of a “maximal domain of preferences for a list of properties”. Let

R∗ ⊂ R̂ ⊂ R. Domain RN
∗ is a maximal domain of preferences in R̂N for a list of axioms

if (i) there is a rule ϕ : RN
∗ × RL

+ → RLN
+ satisfying the axioms; and (ii) for each R0 ∈ R̂\R∗, no

rule ϕ : (R∗ ∪ {R0})N × RL
+ → RLN

+ satisfies them. Our maximal domain results rely crucially on

characterizations of the commodity-wise uniform rule, and therefore, we begin by reviewing them.

These characterizations differ for n = 2 and n > 2.

Proposition 2. [Amorós, 2002] Let n ≡ 2. Then the commodity-wise uniform rule is the only rule

defined on RN
pk.sep−sg.pk × RL

+ satisfying commodity-wise-wise same-sidedness, equal treatment of

equals in physical terms, and strategy-proofness.

For three or more agents, a characterization is available involving a more demanding fairness

requirement, no-envy instead of equal treatment of equals.

Proposition 3. [Adachi, 2010] The commodity-wise uniform rule is the only rule defined on

RN
pk.sep−sg.pk×RL

+ satisfying commodity-wisewise same-sidedness, no-envy, and strategy-proofness.

The above two characterizations concern peak-separable single-peaked preferences. It is an

open question whether, for three or more agents, no-envy can be weakened to equal treatment of

equals in physical terms in characterizing the commodity-wise uniform rule.

Now to explore the existence of maximal domains of preferences, we take Rpk.sep−sg.pk as the

base domain, and inquire about the extent to which conditions SP and C can be relaxed without

compromising the compatibility of commodity-wise same-sidedness, no-envy (or equal treatment

of equals in physical terms) and strategy-proofness. First, we examine relaxing condition C while

maintaining SP. The following result, which involves the axioms in Amorós’ (2002) characterization,

shows that if n ≡ 2 and we add any preference relation R0 ∈ Rsg.pk\Rpk.sep−sg.pk to Rpk.sep−sg.pk,

then no rule satisfies his axioms.

Theorem 3. Let n ≡ 2. Then RN
pk.sep−sg.pk is a maximal domain of preferences in RN

sg.pk for

commodity-wise same-sidedness, equal treatment of equals in physical terms, and strategy-proofness.

Next, replacing equal treatment of equals in physical terms by the stronger fairness axiom,

no-envy, we obtain a maximal domain result for the general n-agent case.
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Theorem 4. Let n ≥ 2. Then RN
pk.sep−sg.pk is a maximal domain of preferences in RN

sg.pk for

commodity-wise-same-sidedness, no-envy, and strategy-proofness.

Theorems 3 and 4 show that in the presence of condition SP, condition C cannot be weakened

if the axioms under consideration are to remain compatible.

Remark 2. Although Theorem 4 covers the two-agent case, it does not imply Theorem 3. This

is because there is no logical relation between equal treatment of equals in physical terms and

no-envy. Similar comments apply to Theorems 5 and 6 below. △

Remark 3. Theorems 3 and 4 show that RN
pk.sep−sg.pk is a maximal domain of preferences in RN

sg.pk

for the respective axioms, but do not fully show the significance of the impossibility. The proof of

the theorems in Section 5 may help answer the questions of this kind. When we impose the axioms

of Theorems 3 and 4, the addition of any R0 ∈ Rsg.pk to Rpk.sep−sg.pk creates an opportunity for

other agents with separable quadratic preferences to profitably misreport, hence violating strategy-

proofness. Put differently, the impossibility holds at such a fundamental level that when R0 is

added to the class of separable quadratic preferences, which is much smaller than Rpk.sep−sg.pk, the

axioms become incompatible. Nevertheless, since they are compatible on RN
pk.sep−sg.pk, the N -fold

product of the class of quadratic preferences is not a maximal domain in RN
sg.pk. Similar comments

apply to Theorems 5 and 6 below. △

Now we search for a maximal domain in the other direction, by relaxing condition SP, but

not condition C. With C still in place, our inquiry is akin to the maximal domain questions in

one-commodity models that have been answered by Ching and Serizawa (1998), and Massó and

Neme (2001, 2004). Ching and Serizawa (1998)’s study is closest in spirit to ours, because we allow

the endowment to vary, as they do. They show that in the one-commodity case, the domain of

single-plateaued preferences is a maximal subdomain of the domain of continuous preferences for

efficiency, equal treatment of equals in welfare terms, and strategy-proofness. For two or more com-

modities, substituting commodity-wise same-sidedness for efficiency further enlarges the maximal

domain, to include plateau-separable weakly single-plateaued preferences. Also, depending on the

number of agents, different fairness axioms are imposed. Theorem 5 pertains to the two-agent

case.

Theorem 5. Let n ≡ 2. Then RN
pl.sep−w.sg.pl is a maximal domain of preferences in RN

pl.sep

for commodity-wise same-sidedness, equal treatment of equals in physical terms, and strategy-

proofness.

We omit the proof of Theorem 5 because with only two agents, a simpler version of the proof

of Theorem 6 suffices. For its proof, we invoke Proposition 2 instead of Proposition 3. As was the
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case when we only weakened condition C, our result for the general n-agent case involves replacing

equal treatment of equals in physical terms by no-envy.

Theorem 6. Let n ≥ 2. Then RN
pl.sep−w.sg.pl is a maximal domain of preferences in RN

pl.sep for

commodity-wise same-sidedness, no-envy, and strategy-proofness.

Remark 4. If we impose efficiency instead of commodity-wise same-sidedness, Theorems 3-6 turn

into impossibilities. Indeed, when n ≡ 2, efficiency and strategy-proofness imply dictatorship

on an even smaller preference domain, namely RN
pk.sep−sg.pk (Amorós, 2002). When n ≥ 2, on

the domain of continuous, monotonic, convex, homothetic and smooth preferences, efficiency and

strategy-proofness imply a violation of the requirement that each agent be provided a “minimal

consumption guarantee”, a requirement that is implied by no-envy (Serizawa and Weymark, 2003).

The proof of this result extends to RN
pk.sep−sg.pk, yielding an impossibility on this domain. △

Remark 5. In our maximal domain results, Theorems 3-6, the social endowment is allowed to vary.

Alternatively, we could seek to identify maximal domains for each fixed endowment, as done by

Massó and Neme (2001, 2004). We conjecture that something similar to the connection between

Ching and Serizawa (1998) and Massó and Neme (2001) holds in the multi-commodity case as

well. That is, given an endowment vector Ω, the maximal domain of preferences for the respective

axioms is larger than those identified in Theorems 3-6. In particular, it permits some measure of

freedom “sufficiently far” from Ω
n
. of course, the intersection of those maximal domains obtained

by letting Ω vary over RL
+ gives the domains our theorems identify. △

5 Proofs

We use the following concepts and notation. Given a preference domain R, a rule ϕ : RN ×
RL

+ → RLN
+ , and an endowment vector Ω ∈ RL

+, for each i ∈ N and each R−i ∈ RN\{i}, let

Ai(R−i,Ω, ϕ) ≡ {ϕi(Ri, R−i,Ω): Ri ∈ R} be agent i’s attainable set given (R−i,Ω) un-

der ϕ. Also, given a ∈ RL
+ and Ω ∈ RL

+, let σ(a) ≡ Ω − a be the symmetric image of a with

respect to Ω
2
. Given a, b ∈ RL

+, let seg[a, b] ≡ {ta + (1 − t)b : t ∈ [0, 1]} be the line segment

connecting a and b; let box[a, b] be the smallest box containing a and b with sides parallel to the

axes.

Also, to mean for instance that agent 1, with true preferences R1, and facing agents 2, . . . , n

announcing R2, . . . , Rn, respectively, is better off announcing R′
1 than telling the truth, we write

ϕ1(
lie

R′
1, R2, . . . , Rn)

truth

P1 ϕ1(
truth

R1 , R2, . . . , Rn).
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We only prove the result for ℓ̄ = 2; adapting the argument for ℓ̄ > 2 is simple. Thus, throughout

this section, let L ≡ {1, 2}.

5.1 Proof of Theorem 3

Let N ≡ {1, 2}. Let R0 ∈ Rsg.pk\Rpk.sep−sg.pk, and suppose, by contradiction, that there is a rule

ϕ defined on (Rpk.sep−sg.pk ∪ {R0})N × RL
+ that satisfies the axioms listed in the theorem. Note

that either v(·|R0) or h(·|R0) is not constant. Without loss of generality, assume that v(·|R0) is

not. Let R1 ≡ R0. We distinguish four cases.

Case 1: (Figure 7) There is t̂ > p1(R1) such that v(t̂|R1) < p2(R1).

Let Ω ≡
(

2t̂, 2p2(R1)
)

∈ RL
+. We proceed in three steps.

Step 1: Let R2 ∈ Rpk.sep−sg.pk be such that p1(R2) = t̂ and p2(R2) > Ω2, and let x ≡
ϕ(R1, R2,Ω). Then x1 =

(

t̂, v(t̂|R1)
)

and x2 = Ω− x1.

To see this, note first that when facing R2, if agent 1 announces a preference relation in Rpk.sep−sg.pk,

then by Proposition 2, ϕ(R1, R2) = U(R1, R2). Thus, A1(R2,Ω, ϕ) ⊇ {U1(R̃1, R2,Ω) : R̃1 ∈
Rpk.sep−sg.pk} = seg[(t̂, 0), Ω

2
]. Within that segment, a ≡

(

t̂, v(t̂|R1)
)

uniquely maximizes R1. Thus,

by strategy-proofness applied to agent 1 with true preferences R1 and facing the announcement R2,

it follows that x1 R1 a.

To show that in fact, x1 = a, suppose not. Because the R1-indifference curve through a lies

to the left of the vertical line through a, we have x11 < a1. Let R̃1 ∈ Rpk.sep−sg.pk be such that

p(R̃1) = x1, and let x̃ ≡ ϕ(R̃1, R2,Ω). Since 1
2

(

p1(R̃1) + p1(R2)
)

< Ω1

2
= p1(R2), it follows that

x̃11 =
Ω1

2
, so that x̃1 6= p(R̃1). Thus, ϕ1(

lie

R1, R2)
truth

P̃1 ϕ1(
truth

R̃1 , R2), in violation of strategy-proofness.

Step 2: Let R′
2 ∈ Rpk.sep−sg.pk be such that p(R′

2) > Ω and x2 P
′
2 (Ω− p(R1)), and x′ ≡

ϕ(R1, R
′
2,Ω). Then x′

1 = p(R1) and x′
2 = Ω− x′

1.

By an argument similar to that in Step 1, A1(R
′
2, ϕ) ⊇ box[0, Ω

2
]. Within that box, p(R1)

uniquely maximizes R1. Thus, by strategy-proofness applied to agent 1 with true preferences R1

and facing the announcement R′
2, it follows that x′

1 R1 p(R1). Hence, x′
1 = p(R1).

Step 3: Concluding. By Steps 1 and 2, ϕ2(R1,
lie

R2)
truth

P ′
2 ϕ2(R1,

truth

R′
2 ), in violation of strategy-

proofness.

Case 2: There is t̂ > p1(R1) such that v(t̂|R1) > p2(R1).

Case 3: There is t̂ < p1(R1) such that v(t̂|R1) < p2(R1).

Case 4: There is t̂ < p1(R1) such that v(t̂|R1) > p2(R1).

For each of Cases 2-4, an argument similar to that in Case 1 leads to a contradiction. We omit

the details.
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(a)

O Commodity 1

Commodity 2
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h

v
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b ≡ p(R1)

Ω
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a

σ(a)

σ(b)

p(R2) p(R′
2)

R1

R′
2

t̂

(b)

O Commodity 1

Commodity 2

h

h

v

v

b ≡ p(R1)

Ω

2

a

σ(a)

σ(b)

p(R2) p(R′
2)

R1

R′
2

t̂

Figure 7: Illustrating Case 1 in the proof of Theorem 3. Panels (a) and (b) show two possible configurations

of the R1-indifference curve through a. Steps 1 and 2 show that ϕ2(R1, R2,Ω) = σ(a) and ϕ2(R1, R
′
2,Ω) =

σ(b). Since σ(a)P ′
2 σ(b), strategy-proofness is violated.
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5.2 Proof of Theorem 4

Let R0 ∈ Rsg.pk\Rpk.sep−sg.pk, and suppose, on the contrary, that there is a rule ϕ defined on

(Rpk.sep−sg.pk ∪ {R0})N × RL
+ that satisfies the axioms listed in the theorem. Note that either

v(·|R0) or h(·|R0) is not constant. Without loss of generality, assume that v(·|R0) is not. Let

R1 ≡ R0. We distinguish four cases.

Case 1: (Figure 8) There is t̂ > p1(R1) such that v(t̂|R1) < p2(R1).

Let Ω ≡
(

n · t̂, n · p2(R1)
)

∈ RL
+. Let a ≡

(

t̂, v(t̂|R1)
)

, b ≡ Ω−a
n−1

, and c ∈ RL
+ be such that

c1 ≡ 2t̂− p1(R1), and Ω2

n
< c2 < b2. Let R′

0 ∈ Rpk.sep−sg.pk be such that p(R′
0) = (t̂,Ω2) and Ω

n
I ′0 c;

let R′′
0 ∈ Rpk.sep−sg.pk be such that p(R′′

0) = (c1,Ω2) and bR′′
0 c. Now, for each i ∈ N\{1, 2}, let

Ri ≡ R′
0. We proceed in three steps.

Step 1: Let R2 ≡ R′
0 and x ≡ ϕ(R1, R2, · · · , Rn,Ω). Then x1 = a, and for each i ∈ N\{1},

xi = b.

To see this, note first that when facing R−1, if agent 1 announces a preference relation in

Rpk.sep−sg.pk, then by Proposition 3, ϕ allocates Ω according to the uniform rule. Thus, A1(R−1,Ω, ϕ) ⊇
{U1(R̃1, R−1,Ω): R̃1 ∈ Rpk.sep−sg.pk} = seg[(t̂, 0), Ω

n
]. Within that segment, a uniquely maxi-

mizes R1. Thus, by strategy-proofness applied to agent 1 with true preferences R1 and facing

the announcements R−1, it follows that x1R1 a.

To show that in fact, x1 = a, suppose not. Because the R1-indifference curve through a lies to

the left of the vertical through a, we have x11 < a1. Let R̃1 ∈ Rpk.sep−sg.pk be such that p(R̃1) = x1,

and let x̃ ≡ ϕ(R̃1, R−1,Ω). Since p1(R̃1) <
Ω1

n
= p1(R2) = · · · = p1(Rn), it follows that x̃11 = Ω1

n

so that x̃1 6= p(R̃1). Thus,

ϕ1(
lie

R1, R2, . . . , Rn)
truth

P̃1 ϕ1(
truth

R̃1 , R2, . . . , Rn),

in violation of strategy-proofness.

Next, we show that for each i ∈ N\{1}, xi = b. If there is i ∈ N\{1} such that xi1 < Ω1

n
,

then by commodity-wise same-sidedness, for each j ∈ N\{1, i}, xj1 ≤ Ω1

n
, so that

∑

N xj1 <

Ω1

n
+ (n − 1)Ω1

n
= Ω1, violating feasibility. Thus, for each i ∈ N\{1}, xi1 ≥ Ω1

n
, and a similar

argument shows that the latter inequality is indeed an equality. Now by no-envy applied to agents

2, · · · , n and feasibility, it follows that for each i ∈ N\{1}, xi = b.

Step 2: Let R′
2 ≡ R′′

0, and x′ ≡ ϕ(R1, R
′
2, R3, · · · , Rn,Ω). Then x′

1 = p(R1) and x′
2 ∈

seg [(c1, 0), c].

Assume first that n ≥ 3. By an argument similar to that in Step 1, A1(R
′
2, R3, · · · , Rn,Ω, ϕ) ⊇

box
[

(p1(R1), 0),
Ω
n

]

. Within that box, p(R1) uniquely maximizes R1. Thus, by strategy-proofness
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(a)
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Commodity 2

p(R1)

h

h

v

v
a

Ω

n

b

c

p(R2) = · · · = p(Rn)

p(R′
2)

R1

R′
2

p1(R1) t̂ c1 ≡ 2t̂− p1(R1)

(b)

O Commodity 1

Commodity 2

p(R1)

h

h

v

v
a

Ω

n

b

c

p(R2) = · · · = p(Rn)

p(R′
2)

R1

R′
2

p1(R1) t̂ c1 ≡ 2t̂− p1(R1)

Figure 8: Illustrating Case 1 in the proof of Theorem 4. Panels (a) and (b) show two possible configurations

of the R1-indifference curve through bundle a. Steps 1 and 2 show that ϕ2(R1, R2, · · · , Rn,Ω) = b and

ϕ2(R1, R
′
2, R3, · · · , Rn,Ω) ∈ seg [(c1, 0), c]. Since b P ′

2 c, strategy-proofness is violated.
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applied to agent 1 with true preferences R1 and facing the announcements R′
2, R3, · · · , Rn, it follows

that x′
1R1 p(R1). Hence, x′

1 = p(R1).

To see x′
2 ∈ seg [(c1, 0), c], we first show that x′

21 = c1 and for each i ∈ N\{1, 2}, x′
i1 = Ω1

n
.

If x′
21 < c1, then by commodity-wise same-sidedness, for each i ∈ N\{1, 2}, x′

i1 ≤ Ω1

n
, so that

∑

N x′
j1 < p1(R1)+c1+(n−2)Ω1

n
= Ω1, violating feasibility. Thus, x′

21 ≥ c1, and similar arguments

show that the latter inequality is indeed an equality and that for each i ∈ N\{1, 2}, x′
i1 =

Ω1

n
.

Now, to show x′
2 ∈ seg [(c1, 0), c], suppose, on the contrary, that x′

2 ∈ seg ]c, (c1,Ω2)]. Because

for each i ∈ N\{1, 2}, x′
i1 =

Ω1

n
, applying no-envy to agents 3, · · · , n, it follows that x′

3 = · · · = x′
n.

By feasibility, this common bundle lies in seg
[

(t̂, 0), Ω
n

[

, and agents 3, · · · , n envy agent 2, in

violation of no-envy. Thus, x′
2 ∈ seg [(c1, 0), c].

If n = 2, the above argument simplifies, and we obtain that x′
1 = p(R1) and x′

2 = Ω − x′
1 ∈

seg [(c1, 0), c].

Step 3: Concluding. By Steps 1 and 2,

ϕ2(R1,
lie

R2, R3, . . . , Rn)
truth

P ′
2 ϕ2(R1,

truth

R′
2 , R3, . . . , Rn),

in violation of strategy-proofness.

Case 2: There is t̂ > p1(R1) such that v(t̂|R1) > p2(R1).

Case 3: There is t̂ < p1(R1) such that v(t̂|R1) < p2(R1).

Case 4: There is t̂ < p1(R1) such that v(t̂|R1) > p2(R1).

For each of Cases 2-4, an argument similar to that in Case 1 leads to a contradiction. We omit

the details.

5.3 Proof of Theorem 6

Let R0 ∈ Rpl.sep\Rpl.sep−w.sg.pl, and suppose, on the contrary, that there is a rule ϕ defined on

(Rpl.sep−w.sg.pl ∪ {R0})N × RL
+ that satisfies the axioms listed in the theorem. Let R1 ≡ R0,

and note that there is t̂ ∈ R+ such that the restriction of R0 to either {(t̂, s) : s ∈ R
{2}
+ } or

{(s, t̂) : s ∈ R
{1}
+ } is not weakly single-plateaued. Assuming, without loss of generality, that the

former is the case, there are a, b, c ∈ RL
+ such that a1 = b1 = c1 = t̂, a2 < b2 < c2, aP1 b, and c P1 b.

Define a′2 ≡ max{s ∈ [a2, b2] : (t̂, s) I1 a} if cR1 a, and max{s ∈ [a2, b2] : (t̂, s) I1 c} otherwise;

c′2 ≡ min{s ∈ [b2, c2] : (t̂, s) I1 a} if cR1 a, and min{s ∈ [b2, c2] : (t̂, s) I1 c} otherwise. By continuity

of R1, a′2 and c′2 are well defined. Let a′ ≡ (t̂, a′2) and c′ ≡ (t̂, c′2). Because the restriction of

R1 to {(t̂, s) : s ∈ R
{2}
+ } is maximized on [p

2
(R1), p̄2(R1)], it follows that either a′2 ≥ p̄2(R1) or

c′2 ≤ p
2
(R1). We discuss these cases separately.
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Figure 9: Illustrating Case 1 in the proof of Theorem 6. Panels (a) and (b) show two possible configurations

of the R1-indifference curve through bundles a′ and c′. In either case, for each i ∈ N , ϕi(R1, · · · , Rn,Ω) =
Ω
n
,

so that commodity-wise same-sidedness is violated.
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Case 1: (Figure 9) a′2 ≥ p̄2(R1).

Let Ω ≡ nc′ ∈ RL
+. We first pick a preference relation in Rpk.sep−sg.pk: let R′

0 ∈ Rpk.sep−sg.pk

be such that p1(R
′
0) = t̂ and p2(R

′
0) ∈]c′2,

Ω2−a′
2

n−1
[. For each i ∈ N\{1}, let Ri ≡ R′

0, and x ≡
ϕ(R1, R2, · · · , Rn). Below we show that for each i ∈ N , xi =

Ω
n
, which contradicts commodity-wise

same-sidedness.

To prove the claim, first let d ≡ Ω − (n − 1)p(R′
0). Note that when facing R−1, if agent 1

announces a preference relation in Rpk.sep−sg.pk, then by Proposition 3, ϕ allocates Ω according to

the uniform rule. Thus, A1(R−1,Ω, ϕ) ⊇ {U1(R̃1, R−1,Ω) : R̃1 ∈ Rpk.sep−sg.pk} = seg[d, Ω
n
]. Within

that segment, Ω
n

uniquely maximizes R1. Thus, by strategy-proofness applied to agent 1 with true

preferences and facing the announcements R−1, it follows that x1 R1
Ω
n
.

To show that in fact, x1 =
Ω
n
, suppose not. Let R̃1 ∈ Rpk.sep−sg.pk be such that p(R̃1) = x1, and

let x̃ ≡ ϕ(R̃1, R−1). If x11 < Ω1

n
, then since p1(R̃1) <

Ω1

n
= p1(R2) = · · · = p1(Rn), it follows that

x̃11 =
Ω1

n
so that x̃1 6= p(R̃1). Thus,

ϕ1(
lie

R1, R2, . . . , Rn)
truth

P̃1 ϕ1(
truth

R̃1 , R2, . . . , Rn),

in violation of strategy-proofness.

The cases x11 >
Ω1

n
and x12 >

Ω2

n
can be shown to yield a contradiction similarly. If x12 <

Ω2

n
,

then because x11 =
Ω1

n
and x1 R1

Ω
n
, we have x12 ≤ a′2 < d2. Since x̃1 = d 6= p(R̃1),

ϕ1(
lie

R1, R2, . . . , Rn)
truth

P̃1 ϕ1(
truth

R̃1 , R2, . . . , Rn),

in violation of strategy-proofness. Thus, x1 =
Ω
n
.

To prove that for each i ∈ N\{1}, xi =
Ω
n
, suppose, on the contrary, that there is i ∈ N\{1}

such that xi1 < Ω1

n
. By commodity-wise same-sidedness, for each j ∈ N\{1, i}, xj1 ≤ Ω1

n
, so that

∑

N xj1 < Ω1

n
+ (n − 1)Ω1

n
= Ω1, violating feasibility. Thus, for each i ∈ N\{1}, xi1 ≥ Ω1

n
, and a

similar argument shows that the latter inequality is indeed an equality. Now by no-envy applied

to agents 2, · · · , n and feasibility, it follows that for each i ∈ N\{1}, xi =
Ω
n
.

Case 2: c′2 ≤ p
2
(R1).

An argument similar to that in Case 1 leads to a contradiction. We omit the details.
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