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Abstract 

A combination of a single-equation model and ordinary least squares (OLS) is 
predominately used to quantify the effects of managerial incentives on corporate 
innovation. The combination is inadequate for two reasons. First, firms in certain 
industries seldom engage in corporate innovation activities while others actively, 
resulting in corporate innovation measures having unusual data points in terms of spikes 
at zero and existence of extreme values.  Second, OLS estimates do not capture 
differential effects of managerial incentives on corporate innovation and are not robust to 
outliers. Therefore, we propose an alternative combination of a mixture-distribution 
model and quantile regression. The mixture-distribution model is used to distinguish 
innovative firms from non-innovative ones. The quantile regression is applied to only 
innovative firms to estimate the differential effects of managerial incentives on corporate 
innovation. It is also used to mitigate the outliers’ influence.  Using only Fama-French 
industry dummies, our logistic regression well separates innovative firms from the non-
innovative ones. Our quantile regression results indicate that managerial incentives play 
heterogeneous roles on corporate innovation depending on firms’ inclination towards 
innovation. Between the two well-known managerial incentives for corporate innovation, 
we find that the vega incentive survives our scrutiny while the delta incentive does not. 
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I. INTRODUCTION 

To estimate the effects of managerial incentives on corporate innovation, researchers 

predominately use all sample observations (“single-equation model”) and ordinary least squares 

(OLS) regression method.  However, this combination is inadequate for two reasons. First, firms 

in certain industries seldom engage in corporate innovation activities while others actively, 

resulting in corporate innovation measures having unusual data points in terms of spikes at zero 

and existence of extreme values.  Second, OLS estimates do not capture differential effects of 

managerial incentives on corporate innovation and are notoriously sensitive to extreme values or 

outliers. 

To mitigate the influence of potential outliers, extant studies usually perform subjective 

data treatment before applying the least squares regression.  The leading data treatment is data 

winsorization which arbitrarily replaces extreme data values of a variable (or univariate outliers) 

by specified percentile values.  This data treatment presents conceptual challenges because 

extreme data values are not necessarily outliers once properly conditioned on a model and 

covariates. Outliers are better treated as a conditional concept in light of a reasonable choice of a 

model and covariates.  This implies that data winsorization distorts informative data if univariate 

outliers can be properly explained by a reasonable model and covariates.  In practice, the extent 

of data winsorization is subjective and susceptible to confirmation bias.  Some winsorize one 

variable whereas others all variables.  Furthermore, the depth of winsorization also varies widely 

from 0.5% to 5% in the executive compensation literature (Wan, 2014).  

To demonstrate the appropriate manner to handle outliers, we investigate the outliers’ 

influence on least squares estimates of managerial incentives on corporate innovation.  This 

empirical relationship is chosen for three reasons.  First, corporate innovation is a major decision 
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in many firms and vital to a country’s long-term economic growth (Kogan et al. 2016).  Second, 

nearly all key variables of interestcorporate innovation and managerial incentiveshave 

univariate outliers (Hall et al., 2001 & 2005; Coles et al., 2006; and Hirshleifer et al., 2012; Kini 

and Williams, 2012; Dong et al., 2016).  For example, some firms invest heavily in research and 

development but many others allocate only limited resources to such activities.  A case in point 

is that Microsoft spent over $11 billion on R&D in 2014, compared with just $30 million for the 

average company in the S&P 1500 index. In terms of the types of managerial incentives, some 

founder-CEOs rely exclusively on stock incentives but many professional CEOs primarily on 

stock-options incentives.  For instance, William Gates, the co-founder of Microsoft, owned over 

ten percent of Microsoft stocks in the 1990s, compared with just 0.3 percent of stock ownership 

for the average CEO in the S&P 1500 index.  These examples suggest that the outliers’ influence 

is potentially serious. 

Lastly, the structure of managerial incentives, in the form of stocks and stock-options, is 

instrumental for value-enhancing corporate innovation (Coles et al., 2006; Hirshleifer and Suh, 

1992).  However, the explosive use of equity-based compensation has many negative unintended 

consequences.  For instance, managerial incentives provided by stock options have been heavily 

criticized since the unfolding of the option backdating scandal and the drastic growth in CEO 

compensation in the 1990s (Bebchuk et al., 2010; Lie and Heron, 2007; Lie, 2005; Hall and 

Murphy, 2003; Bebchuk et al., 2002; Yermack, 1997).  Similarly, a growing number of studies 

show that managerial incentives provided by only stocks (or standard pay-for-performance 

compensation contracts) is suboptimal for corporate innovation (Ederer and Manso, 2013; 

Manso, 2011).  These reasons compel us to examine the outliers’ influence on this research 

question. 
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To identify conventional treatments of outliers in the literature, we have first searched the 

JSTOR database for articles published from 1989 to 2016 in eight leading journals in Accounting 

and Finance using keywords “delta” and “vega”.  The list of journals includes the Journal of 

Finance, Journal of Financial Economics, Review of Financial studies, Journal of Accounting 

and Economics, Journal of Accounting Research, Accounting Review, Review of Accounting 

Studies, and Contemporary Accounting Review.  Delta refers to the sensitivity of CEO wealth to 

stock price (“pay-for-performance sensitivity”) and vega the sensitivity of CEO wealth to stock 

return volatility.  Delta and vega are chosen because they are common and complementary 

measures of managerial incentives.  Next, we include only empirical studies and require them to 

use either delta or vega as an explanatory variable in the empirical analysis. 

Twenty six articles satisfy these requirements. Of these, eighteen (69%) use data 

winsorization to treat outliers while the remaining do not mention any treatments of outliers. Of 

the eighteen studies that apply data winsorization, thirteen (72%) winsorize nearly all variables 

while the rest apply winsorization selectively. Data are predominantly winsorized at the 1% 

level.  In sixteen (89%) of these studies, data are winsorized at the first and 99th percentiles.   

Logarithmic transformation is another remedy to handle outliers.  We are surprised that 

even though data on managerial incentives are highly right-skewed, seventeen (65%) studies use 

raw (unscaled) dollar values to measure delta and vega. 1   Nine studies (35%) use log-

transformed data on managerial incentives, six by taking logarithm of one plus delta (vega) and 

three by taking logarithm of delta (vega).  In the case of taking logarithm of delta (vega), data 

                                                 
1 Some studies transform managerial incentives by deflating them by total (cash) compensation.  This transformation 
worsens the outliers’ influence because the skewness and kurtosis are greater for the transformed variables than for 
the original ones. This is because some CEOs receive exceptionally large or unusually small compensation, e.g., one 
dollar in salary pay (Hamm et al., 2015; Loureiro et al., 2014; and Guthrie et al. 2012).  In unreported results, if vega 
is deflated by total pay, the adjusted skewness and kurtosis of the deflated vega are 4.79 and 10.48, respectively, 
much higher than 2.34 and 4.32 for the raw vega. Our results are similar if we deflate delta by total (cash) 
compensation. 
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truncation occurs because observations with a zero value of delta (vega) are excluded from the 

sample.   

Robust estimation methods are rarely used to deal with outliers.2  Even if they are used, 

they are used as supplementary evidences to demonstrate the robustness of the least squares 

estimates.  Of the twenty six studies, only one (4%) uses the least absolute deviations method 

(i.e., median regression) for estimation.3 

In this paper, we propose an alternative combination of a mixture-distribution model and 

quantile regression to address the unusual data points of corporate innovation measures and the 

fragility of OLS estimates to outliers. To handle the spike at zero of corporate innovation, we use 

a mixture-distribution model to objectively classify firms into innovative firms and non-

innovative ones based on their industries. This classification is necessary because it is pointless 

to estimate the relationships of interest for non-innovative firms as these firms never intend to 

engage in corporate innovation.  Our research methodology involves a two-stage regression 

procedure.   In the first stage, we use logistic regression to separate industries into innovative and 

non-innovative.  In the second stage, after applying logarithmic transformation to our key 

variables of interests, we use regressions to estimate the effect of managerial incentives on 

corporate innovation only for those firms in the innovative industries. Quantile regression is also 

used first to mitigate the outliers’ concern, and second to examine the heterogeneity in the 

relationships between managerial incentives and corporate innovation. The heterogeneity 

                                                 
2 Occasionally, robust estimation methods such as quantile regression, MM-estimator, and Theil-Sen regression are 
used in the accounting and finance literature (e.g., Hallock et al., 2010; Adams et al., 2015; and Ohlson and Kim, 
2015).  
3 In contrast, median regression is commonly used for estimation in the executive compensation literature (Guthrie 
et al., 2012; Garvey and Milbourn, 2006; and Aggrawal and Samwick, 1999).  In unreported results, we find that 
approximately 37 percent of empirical studies use median regression as a supplementary test to model the level of 
executive compensation. 
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consideration is relevant because even within an innovative industry some firms rarely engage in 

corporate innovation while others actively.   

Just by using Fama-French industry dummies, our logistic regression well separates 

innovative firms from the non-innovative ones. Our quantile regression results indicate that 

managerial incentives play heterogeneous roles on corporate innovation depending on firms’ 

inclination towards corporate innovation. Additionally, our quantile regression estimates of vega 

and delta are robust and stable across different quantiles of the conditional distribution.  

Congruent with the literature, our quantile regression results indicate that higher sensitivity of 

CEO wealth to stock return volatility (vega) induces only firms in innovative industries to 

increase corporate innovation including R&D investments, number of patent counts and 

citations.  In contrast, higher CEO pay-for-performance sensitivity (delta) has no material effect 

on corporate innovation.   

In contrast, our least squares estimates of the sensitivity of CEO wealth to stock return 

volatility (vega) are highly sensitive to model specifications. The least squares estimates of vega 

are significantly different from zero in the mixture-distribution model whereas those are 

statistically indistinguishable from zero in the single-equation model.  As the mixture-

distribution model uses only firms in the innovative industries whereas the single-equation model 

uses all the sample firms regardless of whether they belong to the innovative industries, the 

contrasting results on vega imply that higher vega induces only firms in innovative industries to 

increase corporate innovation.  

 Our findings also show that least squares estimates of the CEO pay-for-performance 

sensitivity (delta) are highly sensitive to outliers.  Dropping only one firm from a sample of 635 

firms in the innovative industries reduces the least squares estimates of delta by over 250%, 
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rendering them statistically indistinguishable from zero.  We also find that the least squares 

estimates of delta are fragile and change appreciably to different outlier remedies.   

To the best of our knowledge, this paper is the first to address the heterogeneity in the 

managerial incentive effects on corporate innovation and outlier’s influence on the corporate 

innovation.  Our paper is novel because conventional treatments of outliers are inadequate to 

handle spikes at zero.  To handle the spike at zero, we use a mixture-distribution model to 

identify firms in non-innovative industries and to exclude them in the second stage estimation.  

This approach is less susceptible to sample selection bias than dropping observations with "zero 

corporate innovation activity" for two reasons.  First, the mixture-distribution model uses data 

objectively to classify innovative and non-innovative industries based on whether constituent 

firms in an industry ever engage in corporate innovation activities. Second, the second stage of 

the mixture-distribution model uses all the firm-year observations regardless of whether the 

corporative innovation activity is carried out or not (i.e., zero) in that year so long as the firm 

belongs to the innovative industry. The mixture-distribution model coupled with quantile 

regression in the second stage, also allows for more heterogeneity in the relationship between 

managerial incentives and corporate innovation.  We carry out robustness checks to see whether 

the effects of delta and vega are sensitive to different treatments of outliers in terms of data 

winsorization and logarithmic transformation. 

 

II. SAMPLE AND DATA 

Our sample is constructed from four data sources.  We obtain data on CEO compensation and 

stock ownership from the ExecuComp database.  The ExecuComp database covers firms in the 

S&P 500, S&P Midcap 400, and S&P Smallcap 600.  Next, we obtain accounting data from the 
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Compustat database.  Data on CEO equity incentives are derived from Professor Lalitha 

Naveen’s website and data on patent counts and patent citations from Professor Noah Stoffman’s 

website.  We exclude financial service firms (firms with one-digit SIC of 6) and utility firms 

(firms with two-digit SIC of 49).  Our final sample is an unbalanced panel containing a total of 

12,379 firm-year observations for 1,948 firms over the period between 1993 and 2004. 

We begin our sample in fiscal year 1993 as this is the first year when ExecuComp 

database includes complete data on stock options. Our sample ends in fiscal year 2004 because 

this is the last year when companies are not required to record employee stock options as an 

expense.  After June 15, 2005, the Financial Accounting Standards Board implements the FAS 

123R which requires companies to record fair value of employee stock options as an expense 

(see Hayes et al., 2012).  Thus, the incentive to use stock options to compensate corporate 

executives has changed considerably after 2005.     

 

III. METHODOLOGY  

To model the relationship between managerial incentives and corporate innovation for chief 

executive officers, we use the baseline model in Coles et al. (2006):4   

(1)   yit = xit′β + uit 

where yit represents corporate innovation of firm i in year t and xit is a vector of lagged CEO 

equity incentives joined by a vector of control variables, and uit is a random error.  For yit, we 

take logarithmic transformation of one plus yit, or log(1+yit), because corporate innovation 

variables have unusual data points in terms of extremely large values (justifying the use of 

                                                 
4 This model is chosen because it allows us to compare our results directly to those in Coles et al. (2006) which is 
widely cited with Google Scholar citations of over 1,500 as of June 2017.   
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logarithmic transformation) and spikes at zero (demanding addition of a positive constant before 

the transformation).5 

 

Measures of Corporate Innovation 

We use one input and two output measures for corporate innovation.  The input measure 

is research and development expenditure scaled by book assets (R&D)6.  This measure quantifies 

the amount of resources allocated to corporate innovation activities.   Following extant studies, 

we assign a value of zero for observations with missing values in R&D (Coles et al., 2006; and 

Hirshleifer et al., 2012).7  

The output measures are the number of a firm’s patent counts (#patents) and the number 

of a firm’s patent citations (#patent_cites).  Data on the firm’s patent counts and citations are 

obtained from the April 2013 edition of the patent database in Kogan, Papanikolaou, Seru, and 

Stoffman (see Kogan et al. 2016).  This database covers U.S. patent grants and citations from 

1926 to 2010.  Patents are included in the database only if they are eventually granted.  

 

                                                 
5 To avoid sample selection bias in the second stage estimation, we also include firm-year observations with zero 
corporate innovation intensity in that year so long as the firm belongs to the innovative industry. To avoid excluding 
observations with zero corporate innovation, we add a positive constant (c) to each corporate innovation variable 
(yit) before applying the logarithmic transformation, or log(c+yit).  We follow the literature on corporate innovation 
and use one for the constant (see Hirshleifer et al., 2012), or log(1+yit). Different choices of the constant result in 
different distributions of the transformed variable. In unreported results, we confirm that our results are similar in 
terms of the resulting elasticities whether we add 0.0001, 0.001, or 0.1 instead of 1. 
6 To make our results directly comparable to those in Coles et al, we deflate research and development expenditure 
by book assets. In unreported results, the adjusted skewness and kurtosis turn out to be greater for the scaled R&D 
variable than for the raw R&D variable.  For example, the adjusted skewness and kurtosis of the scaled R&D are 
3.46 and 7.44 compared with 2.16 and 3.41 for the unscaled R&D.  Our (unreported) results on least squares and 
quantile regression estimates are similar in terms of the resulting elasticities whether we use the scaled R&D or the 
raw R&D in the regressions.  
7 Companies can report a missing value in R&D expenditure despite they allocate real resources to such activities 
because they can make a conscious choice of not separating R&D expenses from other reported expenses (McVay, 
2006).  This implies that our treatment of the missing value in R&D underestimates the actual R&D investments.  
Nevertheless, this underestimation is a minor issue in our study because firms that report a missing value in R&D 
usually have no innovation outputs.  For example, Koh and Reeb (2015) find that only 10.5 percent of firms 
reporting a missing value in R&D expenditure receive corporate patents.  This implies that nearly 45 percent of our 

sample observations have no R&D investments and patent grants [= 50% × (100% −10.5%)].  
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Measures of CEO Equity Incentive 

Our measures of managerial incentives include lagged delta (DELTA) and lagged vega 

(VEGA).  Delta is the sensitivity of CEO wealth to stock price.  It is defined as the change in the 

dollar value of the CEO’s wealth for a one percentage point change in stock price in the previous 

year (Jensen and Murphy, 1990).  Vega is the sensitivity of CEO wealth to stock return volatility.  

It is defined as the change in the dollar value of the CEO’s wealth for a 0.01 change in the 

annualized standard deviation of stock returns in the previous year (Coles et al., 2006).  Data on 

delta and vega are derived from Professor Lalitha Naveen’s website.  As option vega is 

significantly larger than stock vega, she measures the total vega of the stock and option portfolio 

by the vega of the option portfolio only.  The vega and delta are calculated based on Core and 

Guay (2002).  Detailed computations of delta and vega are available in Coles et al. (2006). 

 

Control Variables 

We follow the literature and include a set of control variables capturing firm and CEO 

characteristics (Coles et al, 2006; Hirshelifer et al., 2012).   They are the natural logarithm of 

sales (log(SALE)) as a proxy for firm size; market-to-book ratio (M/B) for investment 

opportunity; surplus cash scaled by book assets (SURCASH) for the amount of cash available for 

corporate innovation; sales growth (SALEGRW) for growth opportunity; stock returns (RET) for 

firm performance; cash compensation (CASH) for CEO’s degree of risk aversion; book leverage 

(LEVERAGE) for capital structure; and CEO tenure (CEOTenure) for the CEO’s experience in 

her current position.  These  control variables are measured in the current year.  

More specifically, M/B is the market to book ratio of  asset values; SALEGRW is the 

logarithm of the ratio of sales in the current year to the sales in the previous year; RET is the 
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return on common equity over the current year; CASH is the sum of salary and bonus for the 

CEO; LEVERAGE is the ratio of total book value of debt to book value of total assets; and 

CEOTenure is the length of time (in year) since the executive takes the CEO position in the firm.  

Our baseline model also includes industry fixed effects and year fixed effects.  The industry 

fixed effects take into account 48 industries based on the Fama and French classification.  To 

precisely quantify the outliers’ influence, all data used in this study are untreated.  Appendix 1 

contains a detailed description of these variables.  

 

IV. EMPIRICAL RESULTS 

A. Descriptive Statistics 

Table 2 provides summary statistics of all the variables used in this study in untreated data.  Our 

sample medians are slightly larger but qualitatively similar to those reported in the literature.8  

For example, the median vega is $32,336 in our sample, compared to $34,000 in Coles et al. 

(2006) and $34,860 in Chava and Purnanandam (2010).  The median delta is $203,394 in our 

sample, compared to $206,000 in Coles et al. and $173,790 in Chava and Purnanandam (2010).  

Similarly, the median sales is $1,096 million in our sample, compared to $887 million in Coles et 

al. and $965 million in Chava and Purnanandam (2010).   

[INSERT TABLE 2 HERE] 

It is clear that every variable has univariate outliers, particularly for our key variables of 

interest.  Univariate outliers are many standard deviations away from their respective means.  For 

example, the maximum value of vega has a z-score of 43 and that of delta has a z-score of 61.  

Similarly, the maximum values of all proxies for corporate innovation have a z-score of more 

                                                 
8 The summary statistics reported in this study should be different from those reported in the literature because data 
are untreated in our study whereas those are winsorized in previous studies (e.g., Coles et al., 2006; and Chava and 
Punanandam, 2010). 
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than 25.  These correspond to a probability of less than 0.0001% of such extreme values 

occurring assuming these variables are normally distributed.  The large kurtosis of our key 

variables of interest is another indication of the presence of univariate outliers.  These results are 

expected because extant studies show that means of these variables are many times larger than 

their respective medians.   

It is equally clear that our corporate innovation variables have a discrete spike at zero.  

This indicates that some firms never engage in corporate innovation.  Figures 1A−1C present the 

histograms of R&D expenditure, the number of patent counts, and the number of patent citations, 

respectively.  Approximately one-half of our sample observations have no R&D investments and 

production in corporate patents. 

Simple data treatment moderates the influence of univariate outliers.  If vega is 

winsorized at the 99th percentile, the maximum value of vega will be set at 1,021.41 (z-score of 

3.7) rather than at its original value of 10,840.44 (z-score of 43.25).  The winsorized data value is 

still extreme and corresponds to a probability of less than 0.02% of such an extreme value 

occurring assuming vega is normally distributed.  Alternatively, applying logarithmic 

transformation on our data moderates the influence of univariate outliers because they are highly 

right-skewed.  However, in unreported results log-transformed data remain extreme in values but 

less right-skewed. 

 

B. Mixture-distribution Model 

As data on corporate innovation exhibit a discrete spike at zero, this indicates that some 

companies never intend to engage in corporate innovation.  It is futile to estimate the relationship 

between managerial incentives and corporate innovation for such non-innovative firms because 
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managerial incentives are used for purposes other than corporate innovation, e.g., mitigating 

agency problem (Alchian and Demsetz, 1972; Jensen and Meckling, 1976).  We are surprised 

that nearly all previous studies in the corporate innovation literature include firms in non-

innovative industries in the estimation.  This implies that their results potentially underestimate 

the effects of managerial incentives on corporate innovation for firms that truly engage in 

corporate innovation. 

In this paper, we first use a mixture-distribution model to separate industries into 

innovative and non-innovative. Next, we run several regressions of corporative innovation on 

managerial incentives by using only those firms belonging to the innovative industries. 

Specifically, our research methodology involves a two-step regression procedure.  In the first 

stage, we use logistic regression to distinguish innovative industries from non-innovative ones. 

In the second stage, we use a regression method to estimate the effects of managerial incentives 

on corporate innovation for firms in the innovative industries. 

Equation (2) is the first stage logistic regression: 

(2)   ci* = zi ′γ + vi 

where ci* is a latent variable which measures the propensity that a firm participates in research 

and development. Depending on whether the propensity exceeds a threshold value or not, the 

firm is classified as innovative or not: ci = 1 if ci* > 0 and ci = 0 if otherwise. The dependent 

variable of the logistic regression, ci, is a binary variable and takes the value of zero if a firm’s 

research and development expenditure is consistently zero throughout the sample period, and one 

otherwise. Note that ci does not change its value over time, which implies that once a firm is 

counted as innovative, it stays as such whether the firm engages in innovation or not in a 

particular year. We use R&D expenditure to capture a firm’s proclivity to engage in corporate 
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innovation because it captures real resources committed to corporate innovation.  Additionally, 

extant studies show that R&D expenditure is positively correlated with innovation outputs, e.g., 

patent applications and counts (Hall et al., 2005; Kortum, 1993).  

 The zi is a vector of explanatory variables and vi is a random error following a standard 

logistic distribution.  Our explanatory variables only include a constant and 47 industry dummies 

to reflect the Fama-French 48-industry classification with the baseline industry being agriculture 

(Fama and French, 1997).  This is because first we think that the nature and intensity of 

corporate innovation differ meaningfully across industries and second we do not want to select 

only those firms actively engaging in innovation within an innovative industry. We would like to 

highlight that our model is a mixture-distribution model, not a sample selection model. There are 

two types of industries, innovative and non-innovative. Any firm belonging to an innovative 

industry is counted as innovative while any firm belonging to a non-innovative industry as non-

innovative.  This methodology does not have sample selection problems. We simply estimate the 

effect of managerial incentives on corporative innovation using only firms in the innovative 

industries. We estimate equation (2) using the logistic maximum likelihood estimation method.9 

To avoid statistical over-fitting, we use out-of-sample prediction to evaluate the 

performance of the mixture-distribution model.  Thus, we first split our sample observations 

randomly into three sub-samples: 60% in estimation sample, 20% in validation sample, and 20% 

                                                 
9 The logistic regression fails to identify some industries as either innovative or non-innovative.  The failure occurs 
primarily because the corporate innovation activity is identical (or nearly identical) for all the firms within the same 
industry, i.e. either one or zero.  In such circumstances, we classify all the firms in an industry as innovative if most 
firms in that industry report R&D activities and as non-innovative if most firms in that industry seldom report R&D 
activities. According to this classification rule, tobacco, medical equipment, aerospace, and defense industries are 
classified as innovative whereas precious metal, coal, measuring and control equipment, and transportation 
industries are classified as non-innovative. 
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in testing sample.10  In the first-stage, we use the estimation sample to estimate equation (2).  

Next, for each firm in the validation sample we use the estimated coefficients obtained in the 

first-stage logistic regression to compute the probability ( �̂� ) that a firm is classified as 

innovative.  We use a grid search algorithm to determine the optimal threshold (pc) for 

classifying a firm as innovative such that the number of misclassified firms is minimized in the 

validation sample.11  Last, we choose only firms in innovative industries in the estimation sample 

(henceforth “innovative-firm sample”) for the second-stage regression using the model specified 

in equation (1).  

In the testing sample, we use the estimated coefficients in equations (1) and (2) and the 

classification probabilities (�̂�) to estimate the intensity of corporate innovation for each firm-

year observation as follows:12 

(3)   ���� = 0 × 
1 − �̂�
 + ����� ×	 �̂� 
where �̂�  is the estimated probability that a firm is classified as innovative and ��	 is the 

coefficient estimates obtained in the second-stage regression using the estimation sample.   

To evaluate the performance of the mixture-distribution model, we use a single-equation 

model as a benchmark.  The single-equation model uses all the observations in the estimation 

sample regardless of whether it belongs to the innovative industries or not, to estimate the effect 

of managerial incentives on corporate innovation.13  For each observation in the testing sample, 

                                                 
10 The estimation sample has 1,163 firms (or 7,370 firm-year observations).  The validation sample and the testing 
sample have 391 firms (or 2,475 firm-year observations) and 394 firms (or 2,534 firm-year observations), 
respectively. 
11 Less desirably, we could have used a naïve classification scheme, i.e., classify an industry as innovative if the 
estimated probability in the first-stage logistic regression is greater than 0.5 [or P(ci*>0) > 0.5] and non-innovative 
otherwise. 
12 Alternatively, we could have estimated the R&D intensity as 0 if �̂�is smaller than pc, and as �����  otherwise. 
13 The single-equation model uses all the observations in the estimation sample to estimate the relation between 
managerial incentives and corporate innovation.  In contrast, the mixture-distribution model uses a subset of the 
observations in the estimation sample, namely firms belonging to those industries which are classified as innovative 
in the first stage regression.  
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we compare the mean absolute prediction error and goodness of fit between the mixture-

distribution model and the single-equation model. 

Table 3A reports the results of the first-stage logistic regression using the estimation 

sample.  Expectedly, our results indicate that traditional R&D intensive industries are more 

likely to be classified as innovative, e.g., electronic equipment, pharmaceutical products, 

automobiles and trucks, computers, and aircrafts.  In contrast, conventional non-R&D intensive 

industries are more likely to be classified as non-innovative, e.g., retail, restaurants, and 

wholesale. The goodness of fit of the first stage logistic regression is good with a pseudo R-

square value of 0.44.14  

[INSERT TABLE 3A HERE] 

Table 3B reports the classification accuracy of the first stage regression using the testing 

sample.  Although our explanatory variables only include industry dummies, they are useful to 

classify firms into innovative and non-innovative.  Out of a total of 356 firms in the testing 

sample, 81.2% of them are correctly classified.15  Similarly, alternative statistics to measure the 

classification performance of the first stage regression also point to the same conclusion. 

[INSERT TABLE 3B HERE] 

Table 4 reports the least squares estimates of the model specified in equation (1) using the 

estimation sample.  The results using the single-equation model are reported in columns (1), (3), 

and (5) and those using the mixture-distribution model in columns (2), (4), and (6).  In terms of 

                                                 
14 We have decided not to include any firm-specific characteristics in the first stage regression for two reasons. First, 
the model fitness does not improve appreciably. In unreported results, we observe that the pseudo R-square value 
increases only slightly to 0.47 when we include firm size and its square as additional explanatory variables in the 
first stage regression. Second, we do not want to incur sample selection by basing our classification of innovative vs. 
non-innovative firms only on their industry characteristics. As a result, if a firm in an industry is classified as 
innovative, all the other firms in that industry are also classified as innovative and vice versa. 
15 The classification accuracy is computed as follows: the ratio of the sum of the number of firms correctly classified 
as innovative plus the number of firms correctly classified as non-innovative to the total number of firms.  The 
classification accuracy in our testing sample is (171+118)/356, or 0.812. 
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model performance, our results indicate that the mixture-distribution model is superior to the 

single-equation model.  For each corporate innovation proxy, the out-of-sample mean absolute 

residual (MAR) is smaller in the mixture-distribution model than in the single-equation model.   

[INSERT TABLE 4 HERE] 

Similarly, the relative goodness of fit statistic also indicates superior performance of the 

mixture-distribution model.16  The relative goodness of fit statistics are consistently greater than 

0.5 in favor of the mixture-distribution model.17  For example, in the R&D regression the relative 

goodness of fit statistic of the mixture-distribution model is 0.558.  This indicates that the 

absolute prediction error is smaller in the mixture-distribution model than in the single-equation 

model for 55.8 percent of the testing sample observations.  

Our results indicate that least squares estimates of vega are highly sensitive to model 

specifications.  Specifically, they are statistically indistinguishable from zero in the single-

equation model whereas those are statistically significant at conventional levels in the mixture-

distribution.  This implies that higher vega induces only those firms belonging to the innovative 

industries to increase corporate innovation. If higher managerial incentives are consciously 

structured to enhance corporate innovation for only firms in innovative industries, we expect that 

the estimated effects of vega should be stronger in the mixture-distribution model than in the 

singe-equation model.  Expectedly, the least squares estimates of the elasticity of corporate 

innovation with respect to vega are significantly larger in the mixture-distribution model than 

those in the single-equation model.  For example, the estimated elasticity of corporate patents 

                                                 
16 Suppose ���
�
 and ���
�
 are two different predictors for ��  using two competing models (1) & (2) respectively. The 

goodness of fit of model (2) relative to model (1) is defined as follows: ∑ ����� �����
�
 − ��� < ����
�
 − ����/ , where   

is the size of the testing sample and �� is the observed value of the dependent variable.  The relative goodness of fit 
evaluates the proportion of observations that are better predicted by model (2), relative to that predicted by model 
(1). 
17 Model (2) is considered to be better than model (1) when the goodness of fit of model (2) relative to model (1) is 

greater than 0.5, that is ∑ ����� �����
�
 − ��� < ����
�
 − ����/  > 0.5. 
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with respect to vega increases from 0.0307 in the single-equation model to 0.062 in the mixture-

distribution model, or by 103%.18 

Our results also show that all the least squares estimates of delta are positive and 

statistically significant at conventional levels in both models.  This implies that higher CEO pay-

for-performance sensitivity increases corporate innovation.  This conclusion, though, should not 

be taken seriously because our estimated coefficients of delta change appreciably to different 

remedies of outliers (to be discussed in the subsequent sections).  This implies that the least 

squares estimates of delta are sensitive to the outliers’ influence.19 

   

C. Influential Observations 

To assess the effect of influential observations on least squares estimates, in the second stage we 

perform two sets of regression for each corporate innovation proxy.  In the first set of regression, 

we use only firms in the innovative industries of the estimation sample. In the second set, of all 

the firms in the innovative industries of the estimation sample, we exclude one firm which has 

the largest combined influence on the estimated coefficients of delta and vega.20  To quantify the 

                                                 
18

 The elasticity of corporate patents with respect to vega (ε) is computed as follows: ε =  β × x × (1+y)/y, where β is 

the least square estimate of vega, x is vega, and y is corporate innovation.  We evaluate x and y at their respective 

means using the full sample comprising 12,379 observations.  By arranging terms, we can express β as follows: β = 

∂log(1+y)/∂x = ∂y)/∂x × 1/(1+y).  As elasticity (ε) is defined as ∂y/∂x × x/y, it is easy to show that ε =  β × x × 
(1+y)/y. 
19 Additionally, our least squares estimates of delta are unanticipated and contradictory to those reported in the 
literature.  This is because the least squares estimates of delta are significantly smaller in the mixture-distribution 
model than in the single-equation model.  This implies that higher CEO pay-for-performance sensitivity has a 
weaker effect on corporate innovation for firms in innovative industries than for firms in non-innovative industries.  
Our results in subsequent sections show that higher CEO pay-for-performance sensitivity has no material effect on 
corporate innovation after the influence of outliers is mitigated. 
20 As delta and vega are our main variables of interest, we compute the outlier’s influence by using a multivariate 

version of DFBETAi as follows: !"#$%&� = '(�� − ��
)�
*+,-
)�
)� (�� − ��
)�
*, where ��  is a vector of the estimated 

coefficients of delta and vega using all the firms in innovative industries in the estimation sample and ��
)�
 is a 

vector of the comparable estimates after firm i is excluded from this sample and ,-
)�
)�  is defined analogously as the 

inverse of the estimated variance covariance matrix after firm i is excluded from this sample.  The excluded firm i 
which maximizes DFBETAi is referred to the most influential firm because dropping it produces the largest 
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impact of the influential firm, we compare the estimated coefficients of delta and vega from the 

two sets of regression.  

Columns (1), (3), and (5) of Table 5 report the least squares estimates of each corporate 

innovation proxy in the first set of regressions and columns (2), (4), and (6) of the same Table 

report those in the second set of regressions.  The most influential firm turns out to be Microsoft 

in all the regressions. 

[INSERT TABLE 5 HERE] 

Our results indicate that the outliers’ influence on the least squares estimates of delta is 

pronounced.  For example, after excluding Microsoft from the sample of 635 firms in the 

innovative industries, the least square estimate of the elasticity of corporate patents with respect 

to delta drops from 0.0089 (p-value of 0.001%) in column (3) to −0.0247 (p-value of 27.87%) in 

column (4), or by 377%.  Similarly, removing Microsoft from the sample lowers the estimated 

elasticity of R&D with respect to delta by 583% and that of the elasticity of patent citations with 

respect to delta by 279%.  In all cases, removing Microsoft renders the least square estimates of 

delta statistically indistinguishable from zero, compared with statistical significance at 

conventional levels when Microsoft is included in the sample. 

In contrast, the outliers’ influence on the least squares estimates of vega is much smaller.  

After excluding Microsoft from the sample, the least squares estimates of vega increase slightly 

with a range from 10.43% in the patent citations regression to 14.17% in the corporate patents 

regression.  Besides, all the least squares estimates of vega are statistically distinguishable from 

zero, regardless of whether Microsoft is included or excluded from the sample.  Our results 

indicate that the vega effect is robust to the outliers’ influence whereas the delta effect is not.  

                                                                                                                                                             
combined influence on the estimated coefficients of vega and delta.  Besides, the most influential firm can be viewed 
as an (conditional) outlier. 



20 
 

This compels us to investigate in the next section whether our results vary meaningfully to 

different remedies of outliers. 

 

D. Remedies of Outliers 

To investigate the influence of different remedies of outliers on our least squares 

estimates, we perform three conventional remedies of outliers including (i) logarithmic 

transformation of managerial incentive proxies, (ii) data winsorization, and (iii) median 

regression.21  Table 6 reports least squares estimates under different remedies of outliers for 

firms in innovative industries in the estimation sample: log transformation of one plus each 

managerial incentive proxy (“log-transformed”) in column (2); winsorization of dependent 

variableR&D, #patents, and #patent_citesat the first and the 99th percentiles (“partially-

winsorized”) in column (3); winsorization of all variables at the first and the 99th percentiles 

(“fully-winsorized”) in column (4); and median regression  in column (5).22 

  [INSERT TABLE 6 HERE] 

Our results in Table 6 show that the estimated effects of delta and vega change 

appreciably to different remedies of outliers.  The statistical significance of the least squares 

estimates of delta alters significantly depending on whether data are partially- or fully-

winsorized.  When only dependent variables are winsorized, the least squares estimates of delta 

are economically and statistically identical to those using untreated data.  In contrast, when data 

are fully-winsorized, the least squares estimates of delta are meaningfully different from those 

                                                 
21  Data trimmingdiscard observations with extreme data pointsis occasionally used to treat outliers.  
Nevertheless, data trimming has several shortcomings.  First, least squares estimates are biased if data are selectively 
trimmed (Kothari et al., 2005).  Second, data trimming is subjective and susceptible to confirmation bias.  Third, it 
removes many observations if data are mechanically trimmed at a customary level, e.g., the first and 99th percentiles.  
In untabulated results, when data are fully-trimmed our least squares estimates are qualitatively similar to those 
when data are fully-winsorized. 
22 In untabulated results, our conclusion is qualitatively similar and robust to other winsorization cutoff levels. 
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using untreated data.23  For instance, the least squares estimate of the elasticity of corporate 

patents with respect to delta drops from 0.00892 (p-value of 0.001%) using untreated data in 

column (1) to −0.0457 (p-value of 56.91%) using fully-winsorized data in column (4), or by 

612%.   

Expectedly, the outliers’ influence is not moderated when only dependent variables are 

winsorized.  This is because this remedy fails to modify observations with extreme data points in 

independent variables (i.e., high leverage points) which are usually the source of outliers.24  

Furthermore, least squares estimates are biased when only dependent variables are winsorized 

(Goldberger, 1981).  Although the outliers’ influence is moderated when data are fully-

winsorized, this remedy has many shortcomings.  First, excessive data winsorization distorts 

informative data.  Second, it reduces efficiencies of least squares estimators under most common 

circumstances (Lien and Balakrishnan, 2005).  Third, this remedy is subjective and susceptible to 

confirmation bias. 

Our results also indicate that the statistical significance of the least squares estimates of 

vega is robust and distinguishable from zero, regardless of whether data are treated or not.  

However, the magnitude of these least squares estimates changes significantly under different 

winsorization treatments.  For example, the estimated elasticity of corporate patents with respect 

to vega increases from 0.062 (p-value of 0.06%) using untreated data in column (1) to 0.149 (p-

value of 0.02%) using fully-winsorized data in column (4), or by 141%.  This implies that the 

estimated effects of vega vary under different data treatments. 

Our least squares estimates also differ meaningfully when we apply logarithmic 

                                                 
23 In unreported tables, when only explanatory variables are winsorized at the first and 99th percentiles the least 
squares estimates of delta and vega are qualitatively identical to those using fully-winsorized data. 
24 In statistical jargon, high leverage points refer to observations with an independent variable which has extreme 

values in its distribution. 
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transformation on the managerial incentive variables, compared with those using untreated data.  

In particular, when we use log-transformed data the least squares estimates of vega are 

economically and statistically distinguishable from zero whereas those of delta are not. This 

implies that logarithmic transformation is useful to moderate the outliers’ influence in our model.  

In general, logarithmic transformation is commonly used to deal with extreme data points 

because it compresses highly right-skewed data without distorting raw data.  However, log-

transformed data may exacerbate the outliers’ influence because logarithmic transformation may 

introduce more skewness than untreated data if the underlying distribution is not log-normal 

(Feng et al., 2012).   

As indicated by the results in Table 5, the outliers’ influence on the least squares 

estimates of vega are small whereas those of delta are much larger.  Thus, we anticipate that the 

estimated effects of vega should be qualitatively similar between median regression and least 

squares estimates.  We are surprised that the median regression estimates of vega differ 

meaningfully from the least squares estimates using untreated data.  In particular, our median 

regression estimates of vega are statistically indistinguishable from zero whereas those using 

least squares regressions in untreated data are not.25  Quite the contrary, the estimated effects of 

delta are economically and statistically similar between median regressions and least squares 

regressions. These discrepancies compel us to use quantile regression method in the following 

section.  This is because it allows us to investigate the extent of heterogeneity in the relationship 

at different points of the conditional distribution rather than at a single quantile point (or 

median).   

 

                                                 
25 Overall, our least squares estimates of vega are qualitatively similar to those reported in extant studies (e.g., Coles 
et al., 2006; Hirshleifer et al., 2012) in that the least squares estimates of vega are positive and statistically 
significant at conventional levels.   
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E. Quantile Regression 

In the second-stage procedure, we use quantile regression method for estimation because 

their estimates are robust to outliers (e.g., Koenker and Basset, 1978; Koenker and Hallock, 

2001).  Quantile regression also allows for different estimates to be computed at different 

quantiles of the conditional distribution.  The latter consideration is relevant if the relationship 

differs meaningfully across different quantiles of the conditional distribution.  In practice, many 

economic relationships differ significantly across individuals.  For example, the pay-for-

performance sensitivity varies considerably across different CEOs, firm types, and firm sizes 

(e.g., Hallock et al., 2010; Conyon and Schwalbach, 2000; Baker and Hall, 2004; and Schaefer, 

1998). The relationship between managerial incentives and corporate innovations differs 

meaningfully not only across the innovative industries and the non-innovative industries, but also 

across the firms within the innovative industries. 

We use equation (1) to demonstrate the latter point.  The least squares regression 

minimizes the sum of squared residuals (eit
2) with respect to β: 

(4)   Σeit
2 = Σ(yit - xit′β)2 

where yit is the dependent variable, xit is a vector of explanatory variables, β is a vector of 

regression coefficients, and eit is a residual.  The least squares estimates are vulnerable to the 

outlier’s influence because they are estimated based on a sum of squared residuals.  In contrast, 

quantile regression minimizes the sum of absolute residuals (asymmetrically weighted):  

(5) Σ| yit - xit′β(τ) | × [τ×I(yit > xit′β(τ)) + (1-τ)×I(yit  ≤ xit′β(τ))] 

where β(τ) is a vector of regression coefficients that depend on τ, the quantile being estimated 

(where 0 < τ < 1), and I is the usual indicator function that takes the value of one if the condition 

in the parentheses is true, and zero otherwise. The formula in equation (5) gives a weight of τ to 
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any observations that are greater than their respective predicted values and a weight of (1 – τ) to 

any observations that are smaller than their respective predicted values.  

When τ = 0.5, the quantile regression reduces to median regression and equation (5) can 

be simplified as follows: 

(6) Σ|yit - xit′β|/2. 

Quantile regression allows the regression estimates to differ by quantiles, that is, β(τ) can 

be different across different quantile points being estimated (τ).   

We use quantile regressions to estimate equation (1).  We also perform logarithmic 

transformation of our managerial incentive variables as follows: log(1+vega) and log(1+delta).  

This is because in unreported results we find that the quantile regression estimates of vega and 

delta are significantly more stable across different conditional quantiles after the transformation.  

This indicates that logarithmic transformation is effective to mitigate the outliers’ influence.  

Next, we run nine quantile regressions (where τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) 

only using firms in innovative industries in the estimation sample.   

Table 7 reports the results of the nine quantile regressions of each measure of corporate 

innovation using only firms in innovative industries of the estimation sample.  The estimates of 

nine quantile regressions are reported in columns (2)−(10). For better comparison, we also report 

the least squares estimates in column (1). 

[INSERT TABLE 7 HERE] 

Our results show that nearly all quantile regression estimates of vega are positive.  This 

indicates that higher vega induces firms in innovative industries to increase corporate innovation.  

The positive relationship is most relevant for a firm at the middle quantiles of the conditional 

distribution (where 0.5 ≤ τ ≤ 0.8) because only those estimates are statistically distinguishable 
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from zero.  In contrast, the quantile regression estimates at the lowest quantiles of the conditional 

distribution (where τ = 0.1 or 0.2) are close to zero and statistically indistinguishable from zero.  

For example, the results in Panel B of Table 7 show that the estimated elasticity of corporate 

patents with respect to vega is 0.164 for a firm in the eightieth percentile of the conditional 

distribution (τ = 0.8), compared with zero for a firm in the tenth percentile of the conditional 

distribution (τ = 0.1).  The difference in these two estimates is 0.164.  This implies that there is a 

considerable heterogeneity in the estimated effects of vega on corporate innovation.  The 

heterogeneity in the estimated effects of vega can be clearly seen in Figures 2A, 3A, and 4A 

which plot the nine quantile regression estimates of vega for the R&D, corporate patents, and 

patent citations regressions, respectively. 

For the estimated effects of vega the least squares and median regression estimates are 

remarkably similar.  The results in panel A of Table 7 indicate that the least squares estimate of 

the elasticity of R&D with respect to vega is 0.124 whereas that of the median regression (τ = 

0.5) is 0.126.   Besides, the quantile regression estimates of vega are similar for the quantiles 

greater than 0.2 (τ > 0.2).  The results in panel A of Table 7 show that the estimated elasticity of 

R&D with respect of vega ranges from 0.0837 (τ = 0.8) to 0.126 (τ = 0.5) for the quantiles 

greater than 0.2.  Overall, our quantile regression results are in congruent with findings in extant 

studies in that higher sensitivity of CEO wealth to stock volatility induces firms to increase 

corporate innovation (Coles et al., 2006; Hirshelifer et al., 2016). 

In contrast, none of the quantile regression estimates of delta are statistically 

distinguishable from zero.  This implies that higher CEO pay-for-performance sensitivity (delta) 

has no material effect on corporate innovation, regardless of the expected intensity of corporate 

innovation of the firm.  Similarly, the heterogeneity in the estimated effects of delta can be seen 
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in Figures 2B, 3B, and 4B which plot the nine quantile regression estimates of delta for the 

R&D, corporate patents, and patent citations regressions, respectively. 

As indicated clearly in Figure 2B, the least squares estimate of the elasticity of R&D with 

respect of delta is slightly positive whereas those of the quantile regression estimates are 

negative except for those at the twentieth and twentieth-fifth quantiles.  This contradictory result 

is attributable to an outlier, namely Microsoft.  In statistical parlance, Microsoft is a vertical 

outlier because it invests heavily in R&D.26  Microsoft is one of the biggest spenders on R&D 

investments in the U.S. during the recent decades.  Microsoft is also a high leverage point 

because the company’s CEOs have unusually large equity incentives (i.e., exceptionally large 

delta) but no stock-options (i.e., zero vega).27  William Gates and Steve Ballmer, the former 

CEOs of the company never received a single stock-option grant as they were given substantial 

stock incentives prior to the company went public.  Note that this unique managerial incentive 

structure is not uncommon in the U.S.  In practice, many founder-CEOs rely primarily on stock 

(rather than stock-option) incentives to implement risky policies including corporate 

innovation.28  

 

F. Robustness Tests 

To further understand the merit of the mixture-distribution model, we re-run quantile regressions 

using all the observations in the estimation sample.  Table 8 reports the results of the nine 

quantile regressions of each measure of corporate innovation after firms in non-innovative 

                                                 
26 Vertical outliers refer to observations with extremely large error terms in a given model.   
27 The sensitivity of CEO wealth to stock price (delta) is exceptionally large and economically meaningful for 
William Gates and Steve Ballmer.  For example, in 1998 the wealth of William Gates changed by approximately 
$709.8 million for a one percentage point change in Microsoft’s stock price. 
28 For example, the compensation is primarily cash-based for Jeff Bezos and Steve Jobs, the founders of Amazon 
and Pixar, respectively.  Additionally, they never received a single stock option grant due to their substantial stock 
ownership in the company. 
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industries are also included in the sample.  The estimates of nine quantile regressions are 

reported in columns (2)−(10) and that of the least squares estimate in column (1). 

[INSERT TABLE 8 HERE] 

Our quantile regression estimates in Table 8 differ meaningfully from those in Table 7 

which are obtained by using only firms in innovative industries.  Specifically, the results in Table 

8 show that our quantile regression estimates of vega at the lower quantiles (0.1 ≤ τ ≤ 0.4) are 

close to zero and statistically indistinguishable from zero.  In contrast, those at the higher 

quantiles (τ ≥ 0.5) is positive.  However, of twenty-seven quantile regression estimates of vega, 

only two are statistically significant at conventional levels.  Besides, none of these estimates are 

statistically distinguishable from zero for the corporate patents regressions.  Including firms in 

non-innovative industries in the sample meaningfully weakens the effects of vega except for 

(conditionally) very innovative firms (τ = 0.9).  Expectedly, none of the quantile regression 

estimates of delta are statistically significant at conventional levels.   

The heterogeneity in the estimated effects of vega is noticeably weaker when we include 

firms in non-innovative industries in the quantile regressions. Figures 5A−7A plot the nine 

quantile regression estimates of vega for the R&D, corporate patents, and patent citations 

regressions. For the estimated effects of vega, the least squares and median regression estimates 

are remarkably similar when we use only firms in innovative industries in the estimation.  They 

are quite different, though, when firms in non-innovative industries are included in the 

estimation.  For instance, the results in Figure 5A indicate that the least squares estimates of the 

elasticity of R&D with respect to vega increase as vega increases.  In contrast, those using 

median regressions (τ = 0.5) are constant and do not change when vega increases. 
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As data on corporate innovation has a discrete spike at zero, some studies remove those 

observations from the least squares regressions, e.g., Hirshleifer et al. (2012).  However, this 

approach has two shortcomings.  First, it discards observations with useful information because a 

firm’s corporate innovation output could be irregular over time.  For instance, a company may 

receive patent grants in some years but none in other years.  In unreported results, we find that 

over 25 percent of our sample firms have zero corporate patents in some years but non-zero 

corporate patents in other years. 

Second, selectively removing such firm-year observations with zero corporate 

innovation, first incurs sample selection bias and second weakens the heterogeneity in the 

relationship between managerial incentives and corporate innovation within an industry.  In 

unreported results, when we exclude data with zero corporate patents, our sample size decreases 

from 7,370 to 3,127, or by 58%.  Besides, the ranges of our quantile regression estimates are 

meaningfully smaller than those reported in Table 7. For example, the difference in the quantile 

regression estimates of vega between the lowest quantile (τ = 0.1) and the highest quantile (τ = 

1.0) is significantly smaller when we exclude firm-year observations with zero corporate patents 

than that reported in Panel A of Table 7. 

 

Conclusion 

The mixture-distribution model is a preferred specification to study issues on corporate 

innovation.  This is because many firms never commit resources on corporate innovation and 

should be excluded from the estimation.  The mixture-distribution model allows us to better pin 

down the impact of managerial incentives on corporate innovation objectively for firms that truly 

care about corporate innovation. 
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Second, OLS regression method is inappropriate to estimate the relationship between 

managerial incentives and corporate innovation.  This is because least squares estimates are 

susceptible to the outliers’ influence given our data are highly right-skewed with obvious 

outliers.  Conventional remedies of outliers (e.g., data winsorization) are inadequate because 

outliers are a conditional concept and should be treated based on a reasonable choice of a model 

and covariates.  Furthermore, least squares estimates are fragile and vary appreciably to different 

data treatments.  Last, data treatment is subjective and vulnerable to the confirmation bias. 

To mitigate the outliers’ influence, we first use quantile regressions for estimation and 

second apply logarithmic transformation on key variables of interest.  Our quantile regression 

results indicate that higher sensitivity of CEO wealth to stock return volatility (vega) induces 

firms in innovative industries to increase R&D investment, corporate patents, and patent 

citations.  In addition, the effects of vega are on average stronger for conditionally (expected) 

more innovative firms than for conditionally (expected) less innovative firms.  In contrast, higher 

CEO pay-for-performance sensitivity (delta) has no material effect on corporate innovation.  The 

latter result adds depth to our understanding of the relevance of the standard pay-for-

performance compensation contracts on creativity and corporate innovation.  Our results are 

consistent with findings in recent studies showing that standard pay-for-performance incentive 

schemes are not necessarily optimal to enhance corporate innovation (Ederer and Manso, 2013; 

Manso, 2011; Gneezy and Rustichini, 2000).  
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FIGURE 1A: Histogram of Research and Development Expenditure scaled by Total Asset  

 

 
 

FIGURE 1B: Histogram of the Number of Patent Counts 
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FIGURE 1C: Histogram of the Number of Patent Citations 
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FIGURE 2A: Quantile Regression Estimates of Vega   R&D Expenditure scaled by Total 

Asset  

 
FIGURE 2B: Quantile Regression Estimates of Delta  R&D Expenditure scaled by Total 

Asset 

 
  

0
.0

2
.0

4
.0

6
.0

8
.1

S
lo

p
e
 o

f 
lo

g
(1

+
V

E
G

A
)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Quantile

Quantile Regression OLS

-.
0
3

-.
0
2

-.
0
1

0
.0

1
.0

2
S

lo
p

e
 o

f 
lo

g
(1

+
D

E
L
T

A
)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Quantile

Quantile Regression OLS



33 
 

FIGURE 3A: Quantile Regression Estimates of Vega   Number of Patent Counts 

 
FIGURE 3B: Quantile Regression Estimates of Delta  Number of Patent Counts 
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FIGURE 4A: Quantile Regression Estimates of Vega   Number of Patent Citations 

 
 

FIGURE 4B: Quantile Regression Estimates of Delta  Number of Patent Citations 
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FIGURE 5A: Quantile Regression – R&D Expenditure scaled by Total Asset vs. VEGA 

The upper figure uses all the observations in the estimation sample (“All Firms”) and the lower one uses only firms 

in innovative industries in the estimation sample (“Firms in innovative industries”).  The y-axis is the predicted 

value of the corporate innovation variable. The predicted value is computed based on the quantile regression 

estimate at a given quantile (τ) assuming all the explanatory variables are evaluated at their respective means.  The 

x-axis is the logarithmic transformation of one plus the managerial incentive variable.   
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FIGURE 5B: Quantile Regression– R&D Expenditure scaled by Total Asset vs DELTA 
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FIGURE 6A: Quantile Regression– Number of Patent Counts vs VEGA 
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FIGURE 6B: Quantile Regression– Number of Patent Counts vs DELTA 
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FIGURE 7A: Quantile Regression– Number of Patent Citations vs VEGA 
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FIGURE 7B: Quantile Regression– Number of Patent Citations vs DELTA 
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TABLE 2: Summary Statistics 
 
This table reports summary statistics of all variables used in this study. All variables are measured in the current year except for VEGA and DELTA, which are 

measured in the previous year. Adjusted skewness is the cube root of the skewness as follows: . ∑ 
/0)/̅
20

∑ 
/0)/̅
30 
2/34

�/5
 and adjusted kurtosis is the 4th root of the 

kurtosis as follows: . ∑ 
/0)/̅
60

∑ 
/0)/̅
30 
34

�/7
 .   

 

Variable Mean SD Min 
1

st
 

Percentile 

50
th

 

Percentile 

99
th

 

Percentile 
Max 

Adj. 

Skewness 
Adj. 

Kurtosis 

R&D 3.635 10.806 0.000 0.000 0.222 31.062 849.659 3.459 7.440 

#patent_cites 54.738 308.781 0.000 0.000 0.000 1073.781 9209.707 2.521 4.352 

#patents 22.685 119.571 0.000 0.000 0.000 422.000 3396.000 2.460 4.206 

VEGAt-1 95.633 248.409 0.000 0.000 32.336 1021.409 10840.440 2.337 4.325 

DELTAt-1 1211.224 11612.710 0.000 2.917 203.394 14252.970 709829.700 3.406 6.657 

CASH 1244.607 1364.179 0.000 51.039 895.542 6260.769 43511.530 1.961 3.402 

SALE 4385.605 13081.060 0.047 19.293 1096.270 51760.000 286103.000 2.133 3.392 

M/B 2.117 1.853 0.393 0.720 1.612 8.841 78.562 2.191 4.148 

SURCASH 0.075 0.112 -2.573 -0.217 0.069 0.373 0.944 -1.304 2.595 

SALEGRW 0.090 0.289 -6.092 -0.696 0.081 0.907 4.111 -1.465 3.013 

RET 0.157 0.682 -0.991 -0.822 0.071 2.470 19.719 1.889 3.369 

LEVERAGE 0.231 0.203 0.000 0.000 0.217 0.806 6.605 1.611 3.103 

CEOTenure 8.031 7.496 0.082 0.501 5.999 36.997 54.995 1.268 1.698 
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TABLE 3A: Mixture-distribution Model  First-stage Logistic Regression 

This table reports the first-stage results of applying logistic regression to classify industries into innovative or non- 
innovative industries. The dependent variable is a binary variable which takes the value of zero if a firm’s research 
and development expenditure is always zero throughout the sample period, and one otherwise. The control variables 
in the first stage logit regression are constant and 47 industry dummies with the baseline industry being agriculture, 
which reflects Fama-French’s 48 industries. The numbers in parentheses are robust standard errors, clustered at the 
industry level. *, **, and *** indicate statistical significance at the 10%, 5% and 1% levels. The estimated 
innovation intensity is the probability of an industry being classified as innovative, derived from the estimated 
coefficient. An industry is classified as innovative if the estimated innovation intensity is greater than 0.44 which is 
the optimal threshold as determined by grid search algorithm using the validation sample.  

 Industry Name 
Estimated  
Coefficient 

Standard 
Error 

Estimated 
Innovation 
Intensity 

Innovative  Electronic Equipment 4.736*** (1.360) 0.987 
Industries Pharmaceutical Products 4.167*** (1.363) 0.977 
 Automobiles & Trucks 3.541*** (1.371) 0.958 
 Machinery 3.314*** (1.089) 0.948 

 Computers 3.080*** (1.050) 0.935 
 Chemicals 2.944*** (1.093) 0.927 
 Miscellaneous 2.197 (1.415) 0.857 
 Electrical Equipment 2.110* (1.194) 0.846 
 Shipping Containers 1.792 (1.444) 0.800 
 Shipbuilding & Railroad Equipment 1.504 (1.473) 0.750 
 Recreation 1.322 (1.239) 0.714 
 Consumer Goods 1.099 (1.011) 0.667 
 Fabricated Products 1.099 (1.528) 0.667 
 Rubber & Plastic Products 0.916 (1.170) 0.625 
 Business Supplies 0.875 (0.998) 0.615 

 Business Services 0.654 (0.927) 0.562 
 Steel Works Etc 0.647 (0.998) 0.560 
 Beer & Liquor 0.405 (1.355) 0.500 
 Construction Materials 0.405 (0.994) 0.500 

Non-innovative Food Products 0.143 (1.006) 0.435 
Industries Textiles 0.069 (1.085) 0.417 
 Candy & Soda -0.693 (1.473) 0.250 
 Non-Metallic & Industrial Metal Mining -0.693 (1.473) 0.250 
 Petroleum & Natural Gas -0.847 (0.970) 0.222 
 Printing & Publishing -1.135 (1.113) 0.176 
 Construction -1.135 (1.113) 0.176 

 Entertainment -1.44 (1.105) 0.136 
 Communication -1.451 (1.032) 0.135 
 Apparel -1.674 (1.182) 0.111 
 Wholesale -1.819* (1.054) 0.098 
 Personal Services -2.079 (1.385) 0.077 
 Healthcare -2.269* (1.170) 0.065 
 Restaurants, Hotels, Motels -2.813** (1.369) 0.038 
 Retail -3.390*** (1.160) 0.022 
 Intercept -0.405 (0.913)  

N 1035  
Pseudo R2 0.440  
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TABLE 3B: Classification Accuracy of the First-Stage Logistic Regression 

This table reports the classification accuracy of the first-stage logistic regression based on the actual and predicted 
firm type (innovative or non-innovative) in the testing sample.  The classification accuracy is the ratio of the sum of 
the number of firms correctly classified as innovative plus the number of firms correctly classified as non-innovative 
to the total number of sample firms; the classification sensitivity is the ratio of the number of firms correctly 
classified as innovative to the total number of actual innovative firms; and the classification precision is the ratio of 
the number of firms correctly classified as innovative to the total number of predicted innovative firms.   
 

 Actual  

 Innovative Non-innovative Total 

Predicted Innovative 171 46 217 
 Non-innovative 21 118 139 

 Total 192 164 356 

Classification Accuracy: 0.812 = (171 +118)/ 356 
Classification Sensitivity: 0.891 = 171/ 192 
Classification Precision: 0.788 = 171 / 217 
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TABLE 4: Mixture-distribution Model  Second-stage OLS Regression  
This table presents the least squares estimates of vega and delta in the mixture-distribution model and in the single-
equation model.  The single-equation model uses all observations in the estimation sample and the mixture-
distribution model only uses those firms in innovative industries. The dependent variable is the natural logarithm of 
one plus each proxy of corporate innovation as follows: log(1+R&D), log(1+#patents) and log(1+#patent_cites).  
The explanatory variables include a set of control variables, year fixed effects, and industry fixed effects classified 
based on the Fama-French 48 industry classification.  Definitions of each variable are available in Appendix 1. The 
mean absolute residual (MAR) is the simple average of the prediction error.  The relative goodness of fit statistics 
(Rel. GOF) is the proportion of observations in the testing sample in which the absolute prediction error in the 
mixture-distribution model is smaller than that in the single-equation model.  The numbers in brackets are elasticity 
evaluated at the means of the corresponding variables using the full sample comprising of 12,379 observations. The 
numbers in parentheses are robust standard errors, clustered at industry level. *, **, and *** indicate statistical 
significance at the 10%, 5% and 1% levels.  

 
Dependent R&D R&D #patents #patents #patent_cites #patent_cites 

 (1) (2) (3) (4) (5) (6) 
 Single- 

equation 
Mixture-
distribution 

Single- 
Equation 

Mixture-
distribution 

Single- 
equation 

Mixture-
distribution 

VEGA# 0.192* 0.309** 0.307 0.621*** 0.423 0.834*** 
 (0.103) (0.139) (0.229) (0.182) (0.294) (0.262) 
 [0.0234] [0.0377] [0.0307] [0.0620] [0.0412] [0.0812] 
       

DELTA# 0.00193*** 0.00211** 0.00646*** 0.00705*** 0.00875*** 0.00915*** 
 (0.000645) (0.000836) (0.00236) (0.00159) (0.00250) (0.00179) 
 [0.00298] [0.00326] [0.00817] [0.00892] [0.0108] [0.0113] 
       

CASH# 0.0000207 0.0000516 0.0000279 0.000103 0.0000264 0.000102 
 (0.0000136) (0.0000398) (0.0000292) (0.0000663) (0.0000337) (0.0000746) 
       

log(SALE) -0.103** -0.168*** 0.397*** 0.492*** 0.432*** 0.523*** 
 (0.0451) (0.0596) (0.0758) (0.115) (0.0862) (0.131) 
       

M/B 0.0571*** 0.0535*** 0.0508** 0.0536** 0.0871*** 0.0893*** 
 (0.0163) (0.0184) (0.0189) (0.0214) (0.0202) (0.0238) 
       

SURCASH 1.197*** 1.669*** 0.371** 0.259 0.472** 0.391 
 (0.359) (0.350) (0.173) (0.248) (0.211) (0.307) 
       

SALEGRW -0.122*** -0.170*** -0.376*** -0.403*** -0.395*** -0.407*** 
 (0.0413) (0.0545) (0.0673) (0.116) (0.0761) (0.120) 
       

RET -0.0683*** -0.0897*** -0.0428* -0.0381 -0.0657** -0.0567 
 (0.0146) (0.0214) (0.0224) (0.0392) (0.0256) (0.0455) 
       

LEVERAGE -0.0537 -0.0987 -0.232 -0.238 -0.314* -0.364 
 (0.199) (0.301) (0.155) (0.252) (0.179) (0.273) 
       

CEOTenure -0.00664** -0.0126*** -0.00925* -0.0179** -0.0108* -0.0209** 
 (0.00267) (0.00335) (0.00475) (0.00814) (0.00579) (0.00996) 
       

Intercept 1.529*** 2.468*** -1.295** -1.374* -1.196* -1.119 
 (0.317) (0.389) (0.536) (0.789) (0.602) (0.904) 

Industry F.E. Yes Yes Yes Yes Yes Yes 
Year F.E. Yes Yes Yes Yes Yes Yes 

N 7,370 4,380 7,370 4,380 7,370 4,380 
MAR 0.460 0.433 0.909 0.791 1.119 0.997 
Rel. GOF N/A 0.609 N/A 0.646 N/A 0.634 
Adj. R2 0.595 0.554 0.391 0.366 0.380 0.342 

# All coefficient estimates on VEGA, DELTA, and CASH should be deflated by 1,000.  
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TABLE 5: The Effect of Influential Firms on Estimates of Managerial Incentives  

Second-stage OLS Regression 

 
This table presents the effect of influential observations on the estimated coefficients of managerial incentives on 
each proxy of corporate innovation.  The dependent variable is the natural logarithm of one plus each proxy of 
corporate innovation as follows: log(1+R&D), log(1+#patents) and log(1+#patent_cites).  Columns (1), (3) and (5) 
report the results using firms in innovative industries in the estimation sample whereas columns (2), (4) and (6) 
those after excluding one firm which has the largest combined influence on the estimated coefficients of DELTA 
and VEGA from this sample. The most influential firm is Microsoft in all the regressions.  The relative goodness of 
fit statistic compares how well the baseline model fits the observations using the innovative-firms sample after we 
exclude the most influential firm, compared with that using the innovative-firm sample.  The numbers in brackets 
are elasticity evaluated at the means of the corresponding variables using the full sample comprising of 12,379 
observations. The numbers in parentheses are robust standard errors, clustered at the industry level. *, **, and *** 
indicate statistical significance at the 10%, 5% and 1% levels. 

Dependent R&D R&D #patents #patents #patent_cites #patent_cites 

 (1) (2) (3) (4) (5) (6) 
 Firms in 

innovative 
industries 

Drop  
Microsoft 

Firms in 
innovative 
industries 

Drop  
Microsoft 

Firms in 
innovative 
industries 

Drop  
Microsoft 

VEGA# 0.309** 0.348** 0.621*** 0.709*** 0.834*** 0.921*** 
 (0.139) (0.145) (0.182) (0.240) (0.262) (0.322) 
 [0.0377] [0.0424] [0.0620] [0.0708] [0.0812] [0.0897] 
       

DELTA# 0.00211** -0.0102 0.00705*** -0.0195 0.00915*** -0.0164 
 (0.000836) (0.00873) (0.00159) (0.0180) (0.00179) (0.0209) 
 [0.00326] [-0.0158] [0.00892] [-0.0247] [0.0113] [-0.0202] 
       

CASH# 0.0000516 0.0000519 0.000103 0.000104 0.000102 0.000104 
 (0.0000398) (0.0000414) (0.0000663) (0.0000685) (0.0000746) (0.0000774) 
       

log(SALE) -0.168*** -0.168** 0.492*** 0.491*** 0.523*** 0.521*** 
 (0.0596) (0.0630) (0.115) (0.120) (0.131) (0.137) 
       

M/B 0.0535*** 0.0554*** 0.0536** 0.0574** 0.0893*** 0.0925*** 
 (0.0184) (0.0197) (0.0214) (0.0233) (0.0238) (0.0255) 
       

SURCASH 1.669*** 1.652*** 0.259 0.221 0.391 0.348 
 (0.350) (0.348) (0.248) (0.245) (0.307) (0.303) 
       

SALEGRW -0.170*** -0.164*** -0.403*** -0.390*** -0.407*** -0.393*** 
 (0.0545) (0.0550) (0.116) (0.119) (0.120) (0.122) 
       

RET -0.0897*** -0.0936*** -0.0381 -0.0461 -0.0567 -0.0637 
 (0.0214) (0.0220) (0.0392) (0.0430) (0.0455) (0.0503) 
       

LEVERAGE -0.0987 -0.103 -0.238 -0.245 -0.364 -0.368 
 (0.301) (0.297) (0.252) (0.248) (0.273) (0.267) 
       

CEOTenure -0.0126*** -0.0121*** -0.0179** -0.0170* -0.0209** -0.0200* 
 (0.00335) (0.00343) (0.00814) (0.00849) (0.00996) (0.0104) 
       

Intercept 2.468*** 2.467*** -1.374* -1.370 -1.119 -1.103 
 (0.389) (0.418) (0.789) (0.831) (0.904) (0.952) 

Industry F.E. Yes Yes Yes Yes Yes Yes 
Year F.E. Yes Yes Yes Yes Yes Yes 

N 4,380 4,371 4,380 4,371 4,380 4,371 
Rel. GOF N/A 0.514 N/A 0.510 N/A 0.511 
Adj. R2 0.458 0.460 0.435 0.433 0.407 0.404 

# All coefficient estimates on VEGA, DELTA, and CASH should be deflated by 1,000.  
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TABLE 6: The Effect on Estimates of Managerial Incentives to Different Outlier Remedies 

 Second-stage OLS Regression 
 
This Table reports regression estimates using untreated data under different remedies for outliers: log transformation 

of one plus each equity incentive proxy in column (2); winsorization of only four variablesdelta, vega, cash 

compensation, and market-to-book ratio at the first and 99th percentiles (“partially-winsorized”) in column (3); 
winsorization of all variables at the first and 99th percentiles (“fully-winsorized”) in column (4); and median 
regression which is a robust estimation method in column (5).  The dependent variable is the natural logarithm of 
one plus each proxy of corporate innovation as follows: log(1+R&D), log(1+#patents) and log(1+#patent_cites).  
Our explanatory variables include VEGAt-1, DELTAt-1, control variables and industry fixed effects classified based 
on the Fama-French 48 industry classification.  Definitions of each variable are available in Appendix 1. The 
relative goodness of fit statistic compares how well the baseline model fits the observations in the innovative-firms 
sample after an outlier remedy is applied, compared with the baseline model without this remedy.  The numbers in 
brackets are elasticity evaluated at the means of the corresponding variables using the full sample comprising of 
12,379 observations. The numbers in parentheses are robust standard errors, clustered at the industry level. *, **, 
and *** indicate statistical significance at the 10%, 5% and 1% levels. 

 
 (1) (2) (3) (4) (5) 

Independent 
variable 

Untreated Log transform on 
VEGA and 
DELTA 

Winsorize 
dependent variable 
at 1% 

Winsorize all 
variables at 1% 

Median 
regression  

PANEL A:   log(1+R&D)   (N=4,380, with control variables, industry F.E. and year F.E.) 

VEGA# 0.309** 98.4*** 0.305** 0.813*** 0.356 

 (0.139) (16.1) (0.138) (0.220) (0.396) 
 [0.0377] [0.124] [0.0372] [0.0991] [0.0434] 
      

DELTA# 0.00211** 15.6 0.00202** -0.0104 0.00187*** 

 (0.000836) (38.1) (0.000815) (0.0270) (0.000534) 

 [0.00326] [0.0199] [0.00312] [-0.0161] [0.00289] 

Rel. GOF N/A 0.544 0.546 0.552 0.550 

Adj. R2 0.458 0.470 0.457 0.404 0.422 

PANEL B:   log(1+#patents)   (N=4,380, with control variables, industry F.E. and year F.E.) 
VEGA# 0.621*** 131* 0.600*** 1.50*** 0.528 

 (0.182) (72.7) (0.166) (0.408) (0.330) 

 [0.0620] [0.135] [0.0599] [0.150] [0.0527] 
      

DELTA# 0.00705*** 52.1 0.00710*** -0.0361 0.00605*** 

 (0.00159) (61.3) (0.00154) (0.0634) (0.00163) 

 [0.00892] [0.0544] [0.00898] [-0.0457] [0.00765] 

Rel. GOF N/A 0.528 0.481 0.541 0.532 
Adj. R2 0.435 0.439 0.435 0.281 0.416 

PANEL B:   log(1+#patent_cites)   (N=4,380, with control variables, industry F.E. and year F.E.) 

VEGA# 0.834*** 172** 0.817*** 2.01*** 0.766 

 (0.262) (81.1) (0.244) (0. 498) (0.758) 
 [0.0812] [0.173] [0.0796] [0.196] [0.0746] 
      

DELTA# 0.00915*** 90.3 0.00909*** -0. 0245 0.00771*** 

 (0.00179) (77.0) (0.00175) (0. 0810) (0.00217) 

 [0.0113] [0.0919] [0.0112] [-0.0302] [0.00951] 

Rel. GOF N/A 0.545 0.476 0.545 0.548 

Adj. R2 0.407 0.413 0.407 0.329 0.377 

# All coefficient estimates on VEGA and DELTA should be deflated by 1,000.  
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TABLE 7: Second-stage Quantile Regression  Firms in Innovative Industries 

This Table reports the least square estimates in column (1) and estimates of nine quantile regressions (τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) in columns 

(2)−(10) using only firms in the innovative industries of the estimation sample. The dependent variable is the natural logarithm of one plus each proxy of 
corporate innovation,  log(1+R&D) in Panel A, log(1+#patents) in Panel B, and log(1+#patent cites) in in Panel C.  The vega and delta variables are transformed 
by taking logarithm of one plus delta and vega, log(1+vega) and log(1+delta).  The regressions include firm-level control variables as well as industry fixed 
effects classified based on the Fama-French 48 industry classification. Definition of each variable is available in Appendix 1. The numbers in brackets are 
elasticity evaluated at the means which are computed using the full sample of 12,379 observations. The numbers in parentheses are robust standard errors, 
clustered at the industry level. *, **, and *** indicate statistical significance at the 10%, 5% and 1% levels. 
 

 (1) First (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 OLS τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 

PANEL A:   log(1+R&D)   (N=4,380, with control variables, industry F.E. and year F.E.) 

log(1+VEGA) 0.0984*** 0.0300 0.0693*** 0.0720*** 0.0881*** 0.100*** 0.0924*** 0.0751*** 0.0663*** 0.0721*** 
 (0.0161) (0.0194) (0.0254) (0.0159) (0.0222) (0.0249) (0.0282) (0.0228) (0.0209) (0.0153) 
 [0.124] [0.0379] [0.0874] [0.0909] [0.111] [0.126] [0.117] [0.0948] [0.0837] [0.0910] 
           

log(1+DELTA) 0.0156 -0.00418 0.00619 -0.00267 -0.00738 -0.0152 -0.0141 -0.00123 -0.0119 -0.0155 
 (0.0381) (0.0111) (0.0157) (0.0211) (0.0290) (0.0317) (0.0394) (0.0360) (0.0249) (0.0249) 
 [0.0199] [-0.00533] [0.00789] [-0.00340] [-0.00940] [-0.0194] [-0.0180] [-0.00157] [-0.0152] [-0.0197] 
Adj. R2 0.470          

PANEL B:   log(1+#patents)   (N=4,380, with control variables, industry F.E. and year F.E.) 

log(1+VEGA) 0.131* 0.000 0.000 0.121 0.150** 0.138** 0.154** 0.165*** 0.159** 0.0968 
 (0.0727) (0.00931) (0.0201) (0.0830) (0.0598) (0.0593) (0.0638) (0.0634) (0.0729) (0.121) 
 [0.135] [0.000] [0.000] [0.125] [0.155] [0.143] [0.159] [0.170] [0.164] [0.100] 
           

log(1+DELTA) 0.0521 0.000 0.000 0.0485 0.0530 0.0644 0.0379 0.0425 0.0163 0.0610 
 (0.0613) (0.00909) (0.0206) (0.0647) (0.0753) (0.0599) (0.0605) (0.0675) (0.0471) (0.0718) 
 [0.0544] [0.000] [0.000] [0.0506] [0.0553] [0.0672] [0.0395] [0.0443] [0.0170] [0.0636] 
Adj. R2 0.439          

PANEL C:    log(1+#patent_cites)   (N=4,380, with control variables, industry F.E. and year F.E.) 

log(1+VEGA) 0.172** 0.000 0.000 0.171 0.201** 0.197*** 0.202*** 0.221*** 0.221*** 0.152 
 (0.0811) (0.0154) (0.0274) (0.110) (0.0836) (0.0691) (0.0667) (0.0665) (0.0709) (0.138) 
 [0.173] [0.000] [0.000] [0.172] [0.203] [0.199] [0.204] [0.223] [0.223] [0.153] 
           

log(1+DELTA) 0.0903 0.000 0.000 0.0748 0.0945 0.0903 0.0969 0.0809 0.0706 0.0840 
 (0.0770) (0.0150) (0.0269) (0.0600) (0.0882) (0.0767) (0.0697) (0.0701) (0.0708) (0.0983) 
 [0.0919] [0.000] [0.000] [0.0761] [0.0961] [0.0919] [0.0986] [0.0823] [0.0718] [0.0855] 
Adj. R2 0.400          
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TABLE 8: Quantile Regression  All Firms 

This Table reports the least square estimates in column (1) and estimates of nine quantile regressions (τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) in columns 

(2)−(10) using all firms in the estimation sample.  The dependent variable is the natural logarithm of one plus each proxy of corporate innovation as follows: 
log(1+R&D) in Panel A, log(1+#patents) in Panel B, and log(1+#patent_cites) in in Panel C.  The vega and delta variables are transformed by taking logarithm of 
one plus delta and vega as follows: log(1+vega) and log(1+delta).  The regressions include all firm-level control variables and industry fixed effects classified 
based on the Fama-French 48 industry classification.  Definitions of each variable are available in Appendix 1. The numbers in brackets are elasticity evaluated 
at the means of the corresponding variables using the full sample comprising of 12,379 observations. The numbers in parentheses are robust standard errors, 
clustered at the industry level. *, **, and *** indicate statistical significance at the 10%, 5% and 1% levels. 
 
Independent (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Variable OLS τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 

PANEL A:   log(1+R&D)   (N=7,370, with control variables, industry F.E. and year F.E.) 

log(1+VEGA) 0.0665*** 0.000 0.000 0.000 0.000 0.00383 0.00626 0.00914 0.0168 0.0380** 

 (0.0194) (0.000371) (0.000646) (0.000827) (0.00148) (0.00516) (0.00710) (0.00890) (0.0152) (0.0193) 

 [0.0839] [0.000] [0.000] [0.000] [0.000] [0.00483] [0.00790] [0.0115] [0.0212] [0.0480] 

log(1+DELTA) 0.00209 0.000 0.000 0.000 0.000 -0.00203 -0.00253 -0.00312 -0.00605 -0.0108 

 (0.0209) (0.000242) (0.000397) (0.000502) (0.000793) (0.00213) (0.00248) (0.00263) (0.00469) (0.00821) 

 [0.00266] [0.000] [0.000] [0.000] [0.000] [-0.00259] [-0.00322] [-0.00398] [-0.00771] [-0.0138] 

Adj. R2 0.625          

PANEL B:   log(1+#patents)   (N=7,370, with control variables, industry F.E. and year F.E.) 

log(1+VEGA) 0.0817* 0.000 0.000 0.000 0.000 0.0157 0.0472 0.0682 0.0745 0.0756 

 (0.0428) (0.000) (0.000) (0.000) (0.00250) (0.0282) (0.0353) (0.0430) (0.0495) (0.0568) 

 [0.0844] [0.000] [0.000] [0.000] [0.000] [0.0162] [0.0488] [0.0705] [0.0770] [0.0781] 

log(1+DELTA) -0.00790 0.000 0.000 0.000 0.000 -0.00668 -0.0273 -0.0422* -0.0349 -0.0215 

 (0.0401) (0.000) (0.000) (0.000) (0.00233) (0.0122) (0.0238) (0.0253) (0.0307) (0.0372) 

 [-0.00824] [0.000] [0.000] [0.000] [0.000] [-0.00697] [-0.0285] [-0.0440] [-0.0364] [-0.0224] 

Adj. R2 0.474          

PANEL C:   log(1+#patent_cites)   (N=7,370, with control variables, industry F.E. and year F.E.) 

log(1+VEGA) 0.107** 0.000 0.000 0.000 0.000 0.0167 0.0621 0.100* 0.104** 0.0938* 

 (0.0502) (0.000) (0.000) (0.000) (0.00299) (0.0263) (0.0466) (0.0540) (0.0529) (0.0538) 

 [0.108] [0.000] [0.000] [0.000] [0.000] [0.0168] [0.0626] [0.101] [0.105] [0.0945] 

log(1+DELTA) 0.00847 0.000 0.000 0.000 0.000 -0.00526 -0.0265 -0.0347 -0.0364 -0.0296 

 (0.0515) (0.000) (0.000) (0.000) (0.00257) (0.0108) (0.0253) (0.0315) (0.0370) (0.0426) 

 [0.00862] [0.000] [0.000] [0.000] [0.000] [-0.00535] [-0.0270] [-0.0353] [-0.0370] [-0.0301] 

Adj. R2 0.466          
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APPENDIX 1 – Variable Definitions 

 

Variable Description 

R&D Research and development expenditure scaled by book asset  
 

#patents Number of patent counts 
 

#patent_cites  Number of patent citations 
 

VEGA Sensitivity of CEO wealth to stock return volatility, which is the change 
in the dollar value of the CEO’s wealth for a 0.01 change in the 
annualized standard deviation of stock returns (When log transformation 
is not applied, this variable is scaled down by a factor of 1000) 
 

DELTA Sensitivity of CEO wealth to stock price which is the change in the 
dollar value of the CEO’s wealth for a one percentage point change in 
stock price (When log transformation is not applied, this variable is 
scaled down by a factor of 1,000) 
 

CASH Cash compensation which is the sum of salary and bonus for the CEO in 
the current year (Scaled down by a factor of 1,000) 
 

SALE The net annual sales as reported by the company (in millions) 
 

M/B Market-to-book ratio which is the ratio of market value of assets to book 
value of assets 
 

SURCASH Surplus cash scaled by book asset 
 

SALEGRW Sales growth which is the logarithm of the ratio of sales in the current 
year to the sales in the previous year 
 

RET One year total return to shareholders (in percentage) 
 

LEVERAGE Book leverage which is the ratio of total book value of debt to book 
value of total assets 
 

CEOTenure The length of time (in year) since the executive takes the CEO position 
in the firm 
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