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Abstract

Strategies selected by combining multiple signals suffer severe overfitting biases,

because underlying signals are typically signed such that each predicts positive

in-sample returns. “Highly significant” backtested performance is easy to generate

by selecting stocks on the basis of combinations of randomly generated signals, which

by construction have no true power. This paper analyzes t-statistic distributions for

multi-signal strategies, both empirically and theoretically, to determine appropriate

critical values, which can be several times standard levels. Overfitting bias also

severely exacerbates the multiple testing bias that arises when investigators consider

more results than they present. Combining the best k out of n candidate signals yields

a bias almost as large as those obtained by selecting the single best of nk candidate

signals.
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1. Introduction

Multi-signal equity strategies, i.e., strategies that select or weight stocks on the basis

of a composite measure that combines multiple signals, are common in the money

management industry. For example, the MSCI Quality Index (according to its fact sheet)

identifies “stocks with high quality scores based on three main fundamental variables: high

return on equity (ROE), stable year-over-year earnings growth, and low financial leverage.”

Popular “smart beta” products, such as Research Affiliates’ Fundamental Indices, also

rely heavily on the methodology, weighting stocks on the basis of multiple “fundamental”

measures such as sales, cash flow, book value, and dividends.

Increasingly, multi-signal strategies are attracting scholarly attention. Notable

examples of composite signals employed by academics for stock selection include

Piotroski’s (2000) F-score measure of financial strength, constructed from nine market

signals; the Gompers, Ishii, and Metrick’s (2003) Index, which combines 24 governance

rules to proxy for shareholder rights; the Baker and Wurgler (2006) Index, which combines

six signals of investor sentiment; and Asness, Frazzini, and Pedersen’s (2013) quality score,

which combines 21 stock level characteristics.

Unfortunately, inferences drawn from tests of these sorts of strategies are misleading,

because the backtested performance of strategies selected on the basis of multiple signals

is biased, often severely. The bias results from overfitting. Underlying signals are typically

signed such that each predicts positive in-sample returns. That is, an aspect of the data

(in-sample performance of the individual signals) is used when constructing the strategy,

yielding a particular form (and a particularly pernicious form) of the data-snooping biases

considered generally by Lo and MacKinlay (1990).

This overfitting bias is distinct from the selection bias (or multiple testing bias)

confronted by McLean and Pontiff (2013) and Harvey, Liu, and Zhu (2013). Selection
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bias results when the researcher employs the best performing signal or signals from among

multiple candidates, and fails to account for doing so. The overfitting bias considered here

is strong even when there is no selection bias, i.e., even when a researcher employs each

and every signal considered.

While the overfitting and selection biases are distinct, they do interact, with the

selection bias severely exacerbating the overfitting bias. In fact, the presence of the two

makes the bias exponentially worse. The bias resulting from combining the best k signals

out of a set of n candidates is almost as bad as that from using the single best signal out of

nk candidates.

To demonstrate the severity of the overfitting bias, I construct empirical distributions of

backtested t-statistics for multi-signal strategies, constructed on the basis of purely random

signals. The sorting variable (i.e., the random signals) have no real power, but strategies

based on combinations of the “signals” perform strongly. Essentially, diversifying across

the recommendations of stock pickers that performed well in the past yields even better

past performance, even when the recommendations just follow (or go against) the results of

monkeys throwing darts at the Wall Street Journal. This strong backtested performance in

no way suggests, of course, that these recommendations have any power predicting returns

going forward. For some of the constructions I consider strategies usually backtest, in real

data, with t-statistics in excess of five, and statistical significance at the 5% level requires

t-statistics in excess of seven.

To develop intuition for the observed empirical results, I derive theoretical distributions

for critical t-statistics under the null that signals are uninformative and strategy returns are

normally distributed. These critical values, which have close analytic approximations, are

similar to those observed in the data. Analysis of these results yields several additional

intuitions. First, it suggests that the overfitting bias is severely exacerbated, at least when

there is little selection bias, when more weight is put on stronger signals. That is, when
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researchers allow themselves more flexibility to overfit the data, in the form of freedom

to weight different signals differently, then backtested performance is significantly more

biased. It also suggests that when researchers constrain themselves to weight signals

equally, then the optimal use of the roughly half of the signals that backtest least strongly,

at least for the purpose of maximizing backtested t-statistics, is to simply ignore them.

Finally, the model implies the approximate power law for the interaction of the overfitting

and selection biases, suggesting that the bias that results from combining the best k out of

n candidate signals yields biases almost as bad as selecting the single best of nk candidate

signals.

Note that these results do not suggest that strategy performance cannot be improved

by combining multiple signals. The basic tenants of Markowitz’s (1952) modern portfolio

theory hold, and efficient combinations of high Sharpe ratio assets have even higher Sharpe

ratios. The results do strongly suggest, however, that the marginal contribution of each

individual signal should be evaluated individually. That is, while one should combine

multiple signals they believe in, one should not believe in a combination of signals simply

because they backtest well together.

The rest of the paper is organized as follows. Section 2 provides results from a large

scale bootstrapping exercise. It describes empirical distributions for backtested t-statistics

for strategies, using real stock returns data, selected on the basis of combinations of

fictitious, randomly generated “signals.” Section 3 presents and analyzes a simplified

model, in which signals are uninformative (i.e., do not predict cross sectional differences in

average returns), and the returns to strategies selected on the basis of individual signals are

uncorrelated and normally distributed. It derives critical t-statistics for strategies selected

on the basis of combinations of signals, and uses these results to develop intuition regarding

the factors that determine the magnitude of the backtesting biases. Section 4 derives the

approximate power law governing the interaction between the selection and overfitting
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biases, showing that backtests of a strategy based on the best k of n candidate signals

are biased almost as badly as those of a strategy based on the single best of nk candidate

signals. Section 5 concludes.

2. Empirical results

This section considers the backtested performance of strategies selected by combining

random signals. It generates empirical distributions of backtested t-statistics for a general

class of multi-signal strategies, when signals are uninformative about expected returns, by

considering combinations of multiple random signals thousands of times. By construction,

these signals have no real power, and cannot predict performance out-of-sample.

2.1 Strategy construction

Given any signal, I construct a long/short strategy, rebalanced at the end of June, using

return and capitalization data for individual stocks from CRSP. The weight of a stock in

the long or short side of a strategy is proportional to both the signal and a capitalization

multiplier. That is, stock i is held proportionally to .Si;t � St /mi;t , where Si;t and mi;t

are the signal and capitalization multiplier for the stock i at time t , and St is the median

signal across all stocks. This specification embeds many common construction schemes.

For example, if the signal is an indicator for whether some stock characteristic is in the

extreme 10% of the cross-sectional distribution, then the strategies are just long and short

extreme deciles, equal weighted if the capitalization multiplier is one for all stocks and

value weighted if it is market equity. If the signal is the cardinal ranking of the characteristic

and the capitalization multiplier is always one, then it gives the rank-weighting scheme

employed by Frazzini and Pedersen (2014) to construct their betting-against-beta (BAB)
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factor.

I focus on signal-and-capitalization weighted strategies, because these strategies

map most closely into the theoretical model presented in Section 3, and because the

methodology is similar to that commonly employed in industry. For the capitalization

multiplier I use market equity. The signals are randomly generated “z-scores,” drawn

independently for each stock at the end of each June from a standard normal distribution,

or linear combinations of these randomly generated signals.1 Using rank weighting, or

a simple quantile sort, does not change any of the conclusions of the analysis. In fact,

Appendix A shows that the performance of both signal and rank weighted strategies is

essentially indistinguishable from that of strategies based on simple tercile sorts, equal

weighted if the capitalization multiplier is one and value weighted if the capitalization

multiplier is market equity. So, for example, the salient feature of the rank-weighting

scheme employed by Frazzini and Pedersen (2014) to construct their BAB factor is not

the rank-weighting, but that the scheme ignores market capitalizations. The long and short

sides of the strategy are thus almost indistinguishable, before levering or unlevering, from

equal-weighted portfolios holding the top or bottom 35% of stocks by estimated market

betas.

2.2 A simple illustration

Before analyzing the full scope of the overfitting bias that results form combining

multiple signals, it is useful to illustrate the associated problems as simply as possible.

This illustration simply demonstrates that combining signals that backtest positively can

yield impressive backtested results, even when none of the signals employed to construct

1In particular, because these strategies’ portfolio weights are linear in the signals, and the composite

signals are linear combinations of the underlying signals, strategies based on composite signals are linear

combinations of the strategies based on individual signals. This fact is employed in Section 3, and simplifies

analysis of the model.
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the composite signal has real power, or even individually generates significant backtested

results.

To do this, I generate 10,000 sets of 100 random signals. By construction, none of

the signals have any true power to predict returns. For each set of signals I construct

signal-and-cap weighted strategies, and record t-statistics for these strategies’ excess

returns. For each set I then combine the signals of the two to ten strategies that backtested

with absolute t-statistics closest to either one, or to one and a half.2 These signals are

combined through simple addition, after first flipping the signs on strategies that generated

negative excess returns. Because of the computational intensity of the procedure, I limit

the analysis to a relatively short sample, covering July 1993 through the end of 2014.

Figure 1 shows the average backtested t-statistics for strategies based on combinations

of from two to ten signals that all individually backtest with t-statistics of basically one

(lower solid line) or one and a half (upper solid line). Despite the fact that none of the

underlying signals are themselves significant, or have any true power, the figure shows that

the combined signals often look highly significant in the backtests. In fact, the figure shows

that the average t-statistic is almost as large as the average t-statistic of the underlying

signals times the square root of the number of signals employed (dotted lines). As a

result, combining just two signals with t-statistics of 1.5, or five signals with t-statistics

of one, yields strategies that have average t-statistics significant at the 5% level, at least if

one counterfactually assumes, as is common, that the combined strategy t-statistics have a

standard normal distribution.

2Specifically, I select the k D 2; 3; :::; 10 strategies corresponding to those with consecutive order

statistics with absolute backtested t-statistics with means closest to either one or 1.5.
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Fig. 1. Average t-statistic on strategies that combine insignificant signals. The figure shows the

t-statistic on the excess return to strategies that combine from one to ten random signals, where each

of the underlying signals yields strategies with t-statistics of one (lower solid line) or 1.5 (upper solid

line). Strategies are signal-and-cap weighted, i.e., stocks are held in direct proportion to both market

capitalization and the demeaned signal used for strategy construction. Return and capitalization data

come from CRSP, and the sample covers July 1993 through December 2014. Average t-statistics

are calculated over 10,000 sets of random signals. Dotted lines show the average t-statistic of the

underlying signals, multiplied by the square-root of the number of signals combined.

2.3 Best kkk-of-nnn strategies

The previous subsection clearly illustrates the overfitting problem that biases backtested

performance of multi-signal strategies. The construction of those strategies, however,

with all the underlying signals selected to produce similar, modest performance, is highly

artificial. This section analyses strategies that are more likely to arise naturally out of a real
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research process. In this process a researcher may have a concept or model that suggests

a certain sort of stocks will have higher returns. She then investigates a set of possible

empirical proxies that she thinks might signal stocks that look good on this dimension,

and chooses to somehow combine the few that work the best. If an investigator considers n

signals, and combines the best k of these to select stocks, the result is a best k-of-n strategy.

When k D 1 this results in pure multiple testing, or selection, bias. This bias is relatively

well understood, and interesting here primarily as a point of comparison. At the opposite

extreme, when k D n the result is a pure overfitting bias. When 1 < k < n the result is a

combination of sample selection and overfitting bias.

For strategies that combine multiple signals, there is an additional issue, related to how

signals are combined. In particular, will the investigator constrain herself to putting the

same weight on each signal, or will she give herself the additional degrees of freedom to

employ different weights for each signal? I consider both cases here, proxying for the latter

by signal weighting the signals, i.e., weighting each signal in proportion to the in-sample

performance of strategies based on the individual signals. These correspond to the weights

on the ex-post mean-variance portfolio of the individual strategies, assuming the strategies

are uncorrelated and have identical volatilities.

2.3.1 Distribution of t-statistics from multi-signal strategies

Figure 2 shows the distribution of t-statistics for some simple best k-of-n strategies.

Results are again created by generating 10,000 sets of n random signals. The figure shows

results kernel smoothed with a bandwidth of 0.2.

Panel A shows the case of pure selection bias (k D 1), for n 2 f1; 2; 4; 6; 10g. It

also shows, for comparison, the density for the absolute value of the standard normal. The

empirical distribution of t-statistics for best 1-of-1 strategy looks approximately normal,

though with a slightly fatter tail, reflecting the excess kurtosis and heteroskedasticity
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Fig. 2. Empirical t-statistic distribution for best k-of-n strategies, equal-weighted signals. Panel

A shows the case of pure selection bias (k D 1), for n 2 f1; 2; 4; 6; 10g; Panel B the case of pure

overfitting bias (k D n), for n 2 f2; 3; 5g; and Panel C the combined case, when n D 2k for

n 2 f2; 3; 5g. Distributions are bootstrapped from 10,000 draws of n randomly generated signals,

and kernel smoothed with a bandwidth of 0.2. Strategies are signal-and-cap weighted, with stocks

held in direct proportion to both market capitalization and the demeaned signal used for strategy

construction, and rebalanced annually, at the end of June. Return and capitalization data come from

CRSP, and the sample covers July 1993 through December 2014.
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observed on equity strategy returns. The densities for the cases when n > 1 still look

approximately normal, but are shifted to the right. For n D 2 the mode has shifted out from

zero to almost one. For n D 10 it is almost two.

Panel B shows the case of pure overfitting bias (k D n), for n 2 f2; 3; 5g. Results are

shown for signals that are equal weighted; signals weighting the signal yields even more

extreme results (shown in Appendix B). The figure suggests that even the pure overfitting

biases are more acute that the selection biases. The distribution of t-statistics for the best

5-of-5 strategy is shifted almost as far as it is for the best 1-of-10 strategy.

Panel C shows the impact of the biases, depicting the cases when the investigator

considers twice as many signals as she uses (n D 2k), for n 2 f2; 3; 5g. The effects clearly

compound. More than half of the mass of the distribution for the best 3-of-6 strategy

is to the right of two—so most strategies selected this way look “highly significant.”

Employing three signals in the selection criteria when constructing marketed indices is

relatively common, suggesting that the highly significant performance of many of these

indices, inferred from t-statistics greater than 1.96, is anything but.

2.3.2 Critical t-statistics for multi-signal strategies

Because the distribution of t-statistics for multi-signal strategies does not have a

standard normal distribution, critical values derived from that distribution cannot be used

to draw inferences regarding significance of performance for multi-signal strategies.

Figure 3 shows empirical 5% critical values for best 1-of-n strategies, which suffer

from pure selection bias, and best n-of-n strategies, which suffer from pure overfitting

bias. For the pure overfitting results, it shows both the case when the composite signal is

constructed by equal weighting the individual signals and by signal weighing the individual

signals. It shows that the impact on the critical threshold from the sample selection and

equal weighted overfitting biases are similar for very small n, but that the impact of the
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Fig. 3. Five percent critical t-statistics for best 1-of-n and best n-of-n strategies. The bottom, dotted

line shows 5% critical thresholds for the pure selection bias case, when the investigator presents the

strongest result from a set of n random strategies, where n 2 f1; 2; :::; 10g. The middle, solid line

and the top, dashed line, shows 5% critical thresholds when there is pure overfitting bias. In these

cases stocks are selected by combining all n random signals, but the underlying signals are signed

so that they predict positive in-sample returns. In the top, dashed line signals are signal-weighted,

while in the middle, solid line signals are equal-weighted. Critical values come from generating

10,000 sets of n randomly generated signals. Strategies are signal-and-cap weighted, with stocks

are held in direct proportion to both market capitalization and the demeaned signal used for strategy

construction, and rebalanced annually, at the end of June. Return and capitalization data come from

CRSP, and the sample covers July 1993 through December 2014.
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overfitting bias is more acute for even moderately large n. It also shows that overfitting

by signal weighting the signals yields much higher critical values than equal weighting the

signals. That is, the pure overfitting problem is more acute when the investigator has more

freedom to overweight good signals. The critical value of 2.1 at n D 1 reflects the fat

tail of the distribution of t-statistics for the best 1-of-1 case, observed in Figure 2. This

excess kurtosis yields a higher frequency of extreme t-statistics, pushing up the critical

value relative to the one obtained under the standard normal assumption.

Figure 4 shows empirical 5% critical values for best k-of-n strategies, which suffer

from both selection and overfitting biases. It shows these critical values for the cases when

the best one to ten signals are employed, when 10, 20, 40, or 100 signals are considered,

both when signals are equal-weighted (solid lines) and when signals are signal-weighted

(dotted lines). The combined biases yield extreme critical values. For the best 3-of-10

strategies the 5% critical t-statistic is almost four; for the best 3-of-20 strategies it is

almost five; for the best 7-of-100 strategies it is almost seven. The figure also shows a

non-monotonicity in the critical value for the equal weighted signal case when n D 10,

and a large divergence between the critical values of the equal weighted signal and signal

weighted signal strategies when most the signals considered are employed. This occurs

because in-sample performance is impaired by putting significant weight on poor quality

signals, an effect that is considered in greater detail in the next section.
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Fig. 4. Five percent critical t-statistics for best k-of-n strategies. The figure shows 5% critical

thresholds for strategies selected using a signal constructed by combining the best k D 1; 2; :::; 10

performing signals, when the investigator considered n 2 f10; 20; 40; 100g candidate signals. Solid

lines show the cases when the composite signal is constructed by equal-weighting the k best

performing candidate signals, and dotted lines the cases when the composite signal is constructed

by signal-weighting the signals. Critical values come from generating 10,000 sets of n randomly

generated signals. Strategies are signal-and-cap weighted, with stocks are held in direct proportion

to both market capitalization and the demeaned signal used for strategy construction, and rebalanced

annually, at the end of June. Return and capitalization data come from CRSP, and the sample covers

July 1993 through December 2014.
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3. Model results

To develop intuition for the results observed in the preceding section, I now analyze a

simplified model of strategy performance, deriving distributions of backtest t-statistics, and

properties of these distributions, when stocks are selected on the basis of multiple signals.

3.1. Model

Suppose there are n underlying “signals” used for stock selection, and that the returns

to signal-weighted strategies (i.e., long/short strategies that hold stocks in proportion to

the demeaned signals) are normally distributed, uncorrelated across signals, and have the

same volatilities (or are levered to have the same volatilities). Under these assumptions,

the performance of strategies based on composite signals, formed as linear combinations

of the underlying signals, are relatively easy to analyze. First, the normality of returns

implies that the standard results from modern portfolio theory hold. Second, weights

on individual stocks in a strategy are proportional to the signal used to select them, and

composite signals are linear combinations of the underlying signals, so a strategy selected

on the basis of a composite signal is consequently identical to a portfolio of strategies based

on the individual underlying signals, held in proportion to the weights used to construct the

composite signal.3

Given n signals, the ex-post Sharpe ratio to the strategy that selects stocks based on a

composite signal that puts weights E! on the individual signals is thus the same as that to

3That is, the assumption that individual stock weights are proportional to the signal used to select them,

together with composite signals that are linear combinations of the underlying signals, yields an exact

equivalence between “siloed” and “integrated” solutions (i.e., the solution that runs multiple pure strategies

side-by-side, and the one that select stocks to get exposure to all the signals simultaneously). While these

assumptions are not satisfied for standard quantile sorted strategies, Appendix A shows that the performance

of quantile sorted strategies is essentially indistinguishable from that of rank-weighted strategies, or from

z-score weighted strategies, which do satisfy the assumptions.
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the portfolio that puts weights E! on strategies selected from the individual signals,

SR E! D E! 0 E�e

p
E! 0† E!

; (1)

where E�e is the vector of realized excess returns to strategies selected using the n signals,

and † D �I is the variance-covariance matrix for the strategy returns, where � is the

volatility of the individual strategies. The sample t-statistic estimated on the combined

strategy is thus

Ot E! D E! 0Etp
E! 0 E!

; (2)

where Et is the vector of t-statistics estimated on the individual strategies.

The back-tested performance of strategies formed on the basis of multiple signals

consequently depends on how the signals are used. The two most common choices, equal

weighting the signals ( E! D 1= k1k1) and signal-weighting the signals ( E! D Et=




Et






1
), here

correspond to well understood strategies, the minimum variance and ex-post mean-variance

efficient portfolios, respectively.

Without loss of generality, we may assume that the elements of Et are arranged in

increasing order, and letting In;k be the orthogonal projection onto the lower k dimensional

sub-space (i.e., .In;k/ij D 1 if i D j > n � k, and zero otherwise), we then have that

the sample t-statistics for the minimum variance (i.e., equal weighted) and mean variance

efficient (i.e., signal weighted) strategies based on the best k-of-n signals, denoted tMV
n;k

and
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tMVE
n;k

, respectively, are given by

tMV
n;k D 1

0
In;kEt

p

10In;k1
D





In;k Et






1p
k

D
Pk

iD1 t.nC1�i/p
k

(3)

tMVE
n;k D

Et 0
In;kEt

q

Et 0In;k Et
D





In;kEt






2
D

v

u

u

t

k
X

iD1

t2
.nC1�i/

; (4)

there t.j / denotes the j th order statistic of ft1; t2; :::; tng.

That is, the t-statistic for the best k-of-n strategy that equal weights signals is the

L1-norm of the vector of the largest k order statistics of Et divided by
p

k. Equivalently, it

is
p

k times the average t-statistic of the strategies corresponding to the signals employed.

This conceptualization is basically consistent with the empirical results presented in Figure

1, which showed that the backtested performance of strategies selected on an average of k

signals that individually backtest with similar strength was roughly
p

k times as strong as

the backtested performance of strategies based on the individual signals.

For the strategy that signal weights the signals, the t-statistic is the L2-norm of the

largest k order statistics. Strategy construction tells us that tMV
n;k

� tMVE
n;k

, and standard

results for Lp-norms imply that the bound is tight if and only if the k largest order statistics

are all equal.

When employing k signals from a set of n candidates, I will denote the critical threshold

for tMV
n;k

and tMVE
n;k

at a p-value of p by t�
n;k;p

and t��
n;k;p

, respectively.

3.2. Critical values for special cases: Best 1-of-nnn and nnn-of-nnn strategies

Before analyzing arbitrary t�
n;k;p

and t��
n;k;p

, it is again useful to develop some intuition

by first considering the extreme cases in k. The first of these occurs when the investigator

considers several signals, but only reports results for the single best performing strategy
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(k D 1), and again corresponds to pure selection bias. The properties of the critical

threshold in this case are well understood, but provide a useful point of comparison. The

second occurs when the investigator employs all the signals considered (k D n), but signs

each to predict positive in-sample returns, and again corresponds to pure overfitting bias.

It is free from sample-selection bias, but is biased nevertheless because the joint signal

is constructed using information regarding the directionality with which each individual

signal predicts returns that come from the whole sample.

3.2.1. Pure sample selection bias: Inference when a single signal is used

For the best 1-of-n strategies, note that the order statistics for standard uniform random

variables follow beta distributions, u.k/ � B.k; n C 1 � k/. So for the maximal order

statistic P
�

u.n/ < x
�

D xn, or P
�

u.n/ > .1 � p/1=n
�

D p, implying a critical t-statistic

for rejection at the p level for the single best result from n draws from a standard, normal

random variable of

t�
n;1;p D t��

n;1;p D N �1
�

�

1 � p

2

�1=n
�

; (5)

where N �1.�/ is the inverse of the cumulative normal distribution.

These critical values can be interpreted by recognizing that, for small p,
�

1 � p

2

�1=n �

1 � p

2n
. In fact, when p < 35% then for any n the difference is at least an order of

magnitude smaller than p,

ˇ

ˇ

ˇN �1
�

�

1 � p

2

�1=n
�

� N �1
�

1 � p

2n

�

ˇ

ˇ

ˇ < p=10. That is, to close

approximation the actual p-value is n times as large as the p-value commonly claimed

for an observed t-statistic, p � n � 2 .N.�jt j//. Put simply, the observed result is n

times more likely to have occured randomly than is typically reported. If one suspects that

the observer considered 10 strategies, significance at the 5% level requires that the results

appear significant, using standard tests, at the 0.5% level. This is the standard Bonferroni
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correction for multiple comparison when the hypothesis is that the expected returns to all

n candidate strategies are zero.

3.2.2. Pure overfitting bias: Inference when all signals considered are used

When all the signals considered are used there is no selection bias, but overfitting

still occurs because the signals are typically signed so that they predict high returns

in-sample. In this case the distribution of the observed t-statistic for the strategy based on

the signal-weighted signal (i.e., the ex post MVE combination of the n strategies) is trivial.

All the signals are employed, and the t-statistics on the excess returns to the strategies based

on the underlying signals come from independent standard normal draws. The t-statistic on

the signal-weighted straegy is consequently distributed as a chi-distribution with n degrees

of freedom,

tMVE
n;n D





Et






2
�

q

�2
n: (6)

The critical t-statistic for the ex-post MVE combined strategy constructed using the n

randomly selected signals comes from inverting the chi-squared distribution,

t��
n;n;p D

q

ˆ�1

�2
n

.1 � p/; (7)

where ˆX denotes the cumulative distribution function for the random variable X .

The critical values for the strategies based on the equally weighted signals are more

difficult, but have a simple asymptotic approximation. The mean and variance of the

absolute value of the standard normal variable are
p

2=� and 1 � 2=� , respectively, so

18



limn!1




Et






1
� N.n

p

2=�; n.1 � 2=�//, and

tMV
n;n D





Et






1p
n

�
n!1

q

2n
�

C
�

q

1 � 2
�

�

�: (8)

This implies an asymptotic critical value of

t�
n;n;p �

�

q

2
�

�p
n C

�

q

1 � 2
�

�

N �1.1 � p/ : (9)

The true distribution of tMV
n;n is positively skewed and has excess kurtosis, especially when

n is small, so the true probability that tMV
n;n exceeds this critical value exceeds p. That is,

the estimate is a lower bound on the true critical value. The performance of this estimator

is improved, especially for small n, by replacing p with np

nC1
,

t�
n;n;p �

�

q

2
�

�p
n C

�

q

1 � 2
�

�

N �1
�

1 � np

nC1

�

: (10)

Figure 5 shows 5% critical values for these special cases. The bottom, dotted line shows

t�
1;n;5%, the critical value for the best 1-of-n strategy, which suffers from pure selection

bias. The top, dashed line, and the solid, middle line, show t�
n;n;5% and t��

n;n;5%, the critical

values for the best n-of-n strategies when signals are signal-weighted and equal-weighted,

respectively, which suffer from pure overfitting bias. The dash-dotted line shows the

analytic approximation for t�
n;n;5%, provided in equation (10), which closely matches the

exact value. The figure shows a remarkable resemblance to the empirical distributions

bootstrapped from real stock market data using random signals, provided in Figure 3. The

model critical values are uniformly roughly 7% below their empirical counterparts, for all

three cases and across the range of signals employed (k), because the model lacks the

excess kurtosis and heteroskedasticity observed in the data.
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Fig. 5. Model 5% critical t-statistics for best 1-of-n and best n-of-n strategies. The bottom, dotted

line shows 5% critical thresholds for the pure selection bias case, when the investigator presents the

strongest result from a set of n random strategies, where n 2 f1; 2; :::; 10g. The middle, solid line

and the top, dashed line, show 5% critical thresholds when there is pure overfitting bias. In these

cases stocks are selected by combining all n random signals, but the underlying signals are signed

so that they predict positive in-sample returns. In the top, dashed line signals are signal-weighted,

while in the middle, solid line signals are equal-weighted. The dot-dashed line shows the analytic

approximation for the equal-weighted best n-of-n case.

3.3. General case: best kkk-of-nnn strategies

To calculate the critical t-statistic more generally, when the selection and overfitting

biases interact, note that the order statistics for n draws of the standard uniform distribution

are distributed uniformly on the standard n-simplex �n
� D f.u1; u2; :::; un/ 2 R

nj0 �

u1 � u2 � ::: � un � 1g, which has a volume of 1=nŠ. Using the symmetry of the
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normal distribution, the order statistics for the absolute values of n draws of the standard

normal distribution is obtained by pulling the simplex back through the cumulative normal

distribution, N �1
�

1C�n
�

2

�

, where the inverse normal is taken element-by-element. The

probability that tMV
n;k

and tMVE
n;k

are greater than any given � are thus

P ŒtMV
n;k > �� D E

�

1
n

kIn;ktttk
1

�
p

k�
o

�

(11)

P ŒtMV
n;k > �� D E

�

1
n

kIn;ktttk
2

��
o

�

; (12)

where ttt D N �1
�

1Cuuu
2

�

, and uuu is distributed uniformly on the simplex �n
�. These equations

implicitly define critical thresholds for the best k-of-n strategy for any p-value, t�
n;k;p

D
n

� jP ŒtMV
n;k

> �� D p
o

and t��
n;k;p

D
n

� jP ŒtMVE
n;k

> �� D p
o

.

While these do not admit analytic solutions, they are easy to calculate numerically.

Figure 6 shows 5% critical values as a function k, the number of signals employed, for

k D 1; 2; :::10, for cases in which the investigator considers ten, 20, 40, or 100 signals (i.e.,

n 2 f10; 20; 40; 100g). The figure again shows a strong resemblance to the corresponding

empirical critical values provided in Figure 4. The model shows similar, though slightly

lower, critical values for the pure selection bias cases (k D 1), strong, but slightly weaker

dependence on k for small k, and slightly high sensitivity to k for large k.4 The figure also

shows the same non-monotonicity in the critical value for the equal-weighted signal case

when n D 10, and a large divergence between the critical values for strategies that equal-

and signal-weight signals when k � n. These effects are considered in greater detail in the

next subsection.

4The model’s results correspond even more closely to the empirical distribution of critical t-statistics for

signal-weighted strategies constructed without regards to market capitalizations (i.e., mi;t D 1 for all i and

t). The empirical critical values for these strategies are shown in Table 11 of Appendix C.
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Signal weighted strategies
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Number of signals employed (k)

Fig. 6. Model 5% critical t-statistics for best k-of-n strategies. The figure shows 5% critical

thresholds for strategies selected using a signal constructed by combining the best k D 1; 2; :::; 10

performing signals, when the investigator considered n 2 f10; 20; 40; 100g candidate signals. Solid

lines show the cases when the composite signal is constructed by equal-weighting the k best

performing candidate signals, and dotted lines the cases when the composite signal is constructed

by signal-weighting the signals.

3.3.1. Critical value approximation, general case

Appendix D derives relatively simple analytic approximations, given by

t�
n;k;p � �

tMV
n;k

C �
tMV
n;k

N �1
�

1 � kp

kC1

�

(13)

t��
n;k;p �

r

�
.tMVE

n;k /
2 C �

.tMVE
n;k /

2N �1

�

1 � kp

kC1

�

; (14)
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where

�
tMV
n;k

D
p

k �n;k

�2
tMV
n;k

D †n;k � �2
n;k C k.n�k/.�n;k ��n;k/

2

.kC1/.nC2/

�
.tMVE

n;k /
2 D k†n;k

�2

.tMVE
n;k /

2 D k
�

�3
n;k�n;k C 3†n;k � †2

n;k

�

C k2.n�k/.†n;k ��2
n;k/

2

.kC1/.nC2/
;

and

�n;k � N �1
�

E
�

1
2

�

1 C U.n�k/

���

D N �1
�

1 � kC1
2.nC1/

�

�n;k � E Œ�j� > �n;k� D n.�n;k/

1 � N.�n;k/
D 2

�

nC1
kC1

�

n.�n;k/

†n;k � E
�

�2j� > �n;k

�

D 1 C �n;k�n;k:

The variances terms in equations (13) and (14) are relatively insensitive to n and k, while

the means are strongly increasing in both indices (at least for small k), consistent with the

basic rightward shift in the empirical distributions observed in Figure 2.

Figure 7 compares these analytic approximations to the exact critical values, calculated

using numeric integration. Panel A shows the case when the investigator considers 100

candidate signals (n D 100), for the full range of the possible number of signals employed

(k D 1; 2; :::; 100). The top, light solid line shows the exact critical values for the

cases when signals are signal-weighted, while the closely tracking dotted line shows the

corresponding approximation. The lower, dark lines show the same for the cases when

signals are equal-weighted. Panels B and C show similar results, when the investigator

considers only 40 or 20 candidate signals.

An obvious feature of Figure 7 is the peak in t�
n;k;p

near the middle, where k � n=2.
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Fig. 7. Comparison of exact and approximate 5% critical t-statistics for best k-of-n strategies. The

figure shows 5% critical thresholds for best k-of-n strategies. Solid lines are exact values, while

dotted lines are analytic approximations. The top, lighter lines show critical values for strategies

that signal-weight signals, while the lower, darker lines correspond to strategies that equal-weight

signals.
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The performance of the ex-post mean variance efficient strategy is always weakly improved

by adding strategies to the investment opportunity set, so the critical t-statistic threshold for

the signal weighted combination of strategies, t��
n;k;p

, is increasing in k � n for all n and p.

The same is not true for the critical t-statistic threshold for the equal weighted combination

of strategies, t�
n;k;p

. With these strategies there is a tension. Increasing the number of

signals used decreases strategy volatility, which tends to improve performance. At the same

time, using more signals reduces average returns, as the average quality of the signals for

predicting in-sample performance falls, which tends to hurt performance. Initially the first

effect dominates, and performance improves with more signals, but eventually the quality

of the signal deteriorates sufficiently that the gains from additional strategy diversification

are more than offset by the loss in average returns. At that point employing additional

signals is detrimental to performance. The point at which overall performance starts to

deteriorate, i.e., the optimal number of signals to use to predict in-sample performance,

can be approximated by noting that this occurs (abusing the infinitesimal notation) when

d
dk

E
h

tMV
n;k

i

D 0. Differentiating the expected t-statistic using the right hand side of

equation (3), this implies

E
�

t.n�k/

�

E
h

Pk
iD1 t.nC1�i/

i D 1

2k
; (15)

or, after rearranging and using iterated expectations, that

E
�

t.n�k/

�

D E

2

4

E
h

Pk
iD1 t.nC1�i/

ˇ

ˇt.n�k/

i

2k

3

5 D E
�

�
�

t.n�k/

��

2
: (16)

That is, there is no longer a benefit to using additional signals when the next signal is only

half as good as the average of all the better signals already employed.

Finally, using E
�

�
�

t.n�k/

��

� �
�

E
�

t.n�k/

��

and E
�

t.n�k/

�

� �n;k, the previous

25



equation implies that �n;k D �.�n;k/ =2; or using �n;k D N �1
�

1 � kC1
2.nC1/

�

and letting

x� D 0:612 be the solution to 2x D n.x/=N.�x/, that

kC1
nC1

� 2N.�x�/ D 0:541; (17)

or that k � n=2. Consistent with Figure 7, given n candidate signals the maximal Sharpe

ratio strategy that equal-weights signals employs roughly half the signals. That is, when

forming equal-weighted strategies, the optimal “use” of the worst performing half of the

typical set of candidate signals is to simply ignore them. Observing that a multi-signal

strategy fails to employ any poor quality signals consequently raises concerns that the

investigator threw out poor performing candidates, suggesting selection bias (i.e., n > k)

as well as overfitting bias (i.e., signing each signal so that it performs well in sample).

In this case the expected t-statistic is EŒtMV
2k;k

� � 4n
�

N �1.3=4/
�
p

k D 1:27
p

k, almost

60% higher that the t-statistic that would have been expected absent the selection bias,

EŒtMV
k;k

� �
p

2k=� D 0:8
p

k.

4 Pure selection bias equivalence

Another way to quantify the impact of the combined sample selection and overfitting

biases, and how they interact, is to calculate the number of candidate signals an investigator

would need to consider to get the same bias selecting stocks using a single signal. That is,

given any critical value � and p-value p, we can find n� such that � D N �1
�

�

1 � p

2

�1=n�
�

.

Solving for n�, the number of single-signal strategies the investigator would need to

consider to have the same critical value, is thus

n� D ln
�

1 � p

2

�

ln .N.�//
: (18)
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Table 1. Single-signal candidates required to get best k-of-n 5% critical threshold

The table reports the number of candidates a researcher would need to consider, when selecting the single

strongest signal, to get the same 5% critical t-statistic for a best k-of-n strategy. Panel A reports the cases

when the signals are equal-weighted (i.e., reports n� such that t�
1;n�;5% D t�

k;n;5%
). Panel B reports the cases

when the signals are signal-weighted (i.e., reports n� such that t�
1;n� ;5%

D t��
k;n;5%

).

Signals Signals used (k)

considered (n) 2 3 4 5 10

Panel A: Equal-weighted signals (minimum variance strategies)

10 57 164 305 426 141

20 227 1,250 4,490 12,000 113,000

50 1,360 17,500 147,000 900,000 5.03�108

100 5,220 128,000 2.02 �106 2.33 �107 2.85 �1011

Panel B: Signal-weighted signals (mean-variance efficient strategies)

10 73 260 614 1,102 2,690

20 277 1,810 7,680 24,400 658,000

50 1,600 23,400 223,000 1.55�106 1.70�109

100 6,020 165,000 2.88�106 3.70�107 7.78�1011

Table 1 shows single-signal equivalent sample sizes, for actual sample size from ten to

100 (rows), when employing two to ten signals (columns). The table shows the pernicious

interaction between the sample selection and overfitting biases. Panel A, which shows

the case when multiple signals are signal-weighted, shows that using just the best three

signals from 20 candidates yields a bias as bad as if the investigator had used the single best

performing signal from 1,250 candidates. With five signals selected from 50 candidates,

the bias is almost as bad as if the investigator had used the single best performing signal

from one million. Panel B shows even stronger results when the researcher has the freedom

to overweight more strongly performing signals.

A key feature of Table 1 is that the equivalent number of single signals considered (n�)

generally grows quickly with the number of signals employed (k). To quantify this relation,

note that n� � p=2

N.��/
. Taking logs, using the approximation N.��/ � n.�/=� for large � ,

gives that ln n� is of order �2, or using the approximation for t�
n;k;p

given in equation (13),
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Fig. 8. Number of single candidates strategies to generate the five percent critical thresholds for

best k-of-n strategies. The figure plots, using a log-log scale, the number of single signals required

to generate the best k-of-n critical values at the 5% level, t�
n;k;5%

(equal-weighted signals, solid

lines) and t��
n;k;5%

(signal-weighted signals, dotted lines), as a function of the number of candidate

strategies actually considered (n, from ten to 100). Strategies are constructed using the best two,

three, and five signals (k). The figure shows the expected approximately linear log-log relation,

with slopes proportional to the number of signals employed.

that ln n� is of order k�2
n;k

. Finally, using �n;k � �n;k D N �1
�

1 � kC1
2.nC1/

�

for k � n

and the inverse normal approximation N �1.�/ �
q

� ln .4�.1��//p
�=8

, this implies that ln n� is

approximately affine in ln n, with a slope approximately proportional to k. That is, n� is

roughly proportional to nk .

This approximate power relation is evident in Figure 8, which plots, on a log-log

scale, the number of single-signal candidates required (n�) to generate the best k-of-n

5% critical values, t�
n;k;5%

(equal-weighted signal, solid lines) and t��
n;k;5%

(signal-weighted
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signal, dotted lines), as a function of the number of candidate strategies actually considered

(n, form ten to 100). This n� is plotted for strategies constructed using the best two, three,

and five signals. As predicted, the figure shows an approximately linear log-log relation,

with slopes proportional to the number of signals employed.

This approximate power law can be understood intuitively as follows. The biases that

result from using the best k-of-n signals are worse than one would get by partitioning the

signals into k random sub-samples of size n=k, and then using the single best signal from

each sub-sample. The expected in-sample improvement in the quality of the employed

signals that results from going from one candidate to n=k signals is almost as large as

going from one signal to n signals, because the oversampling bias is highly convex in the

candidate sample size, and the effects on n� are multiplicative. The bias that results from

the best k-of-n strategies is consequently almost as pronounced as if the investigator had

used the single best signal from nk candidate strategies.

5. Conclusion

Multi-signal strategies cannot be evaluated using conventional tests. Combining

spurious, marginal signals, it is easy to generate backtested performance that looks

impressive, at least when evaluated using the wrong statistics. One solution is to evaluate

multi-signal strategies using different statistics. An easier solution is to evaluate the

marginal power of each signal separately.

This is not to say that one should not use multiple signals that one believes in. Signals

that work well individually will work even better together. One should not, however,

believe in multiple signals because they backtest well together. Backtesting well together

does not imply that any of the signals, or even the combined signal, has any power.
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A. Signal and rank weighted strategies

The strategies considered in Section 2 hold stocks in proportion to .Si;t � St/mi;t ,

where Si;t and mi;t are the signal and capitalization multiplier for stock i at time t , and

St is the median signal across all stocks. This specification embeds standard quantile

sorts (when Si;t equals an indicator that the sorting characteristic is in the top x% of

the cross-sectional distribution, minus an indicator that it is in the bottom x% of the

cross-sectional distribution), rank-weighted strategies (when Si;t is the cross-sectional rank

of the sorting characteristic), and z-score weighted strategies (when Si;t is the z-score of the

sorting characteristic). It also embeds both value-weighted and equal-weighted strategies

(the former when market cap multiplier mi;t is a stock’s market capitalization; the latter

when it is one for all stocks).

To facilitate comparison between the empirical results of Section 2 and the theory

presented in Section 3, I assume that the signals were uncorrelated normally distributed

z-scores. Under this assumption, integrated solutions (i.e., strategies based on composite

signals) are exactly equivalent to siloed solutions (i.e., to portfolios of strategies based

on the individual signals). This simplifies the analysis, because it allows us to use well

known results from portfolio theory. This section shows that this assumption is largely

immaterial, as the performance of strategies based on quantile sorts, rank-weighting, and

z-score weighting are essentially indistinguishable.

This fact should not, perhaps, be very surprising. Figure 9 shows the relative weights

on the long side of long/short strategies constructed by tertile (top 35%) sorting (dotted

line), rank-weighting (dashed line), and z-score weighting (solid line). The figure shows

that each dollar of the long side of a z-score weighted strategy differs from the quantile

portfolio that equal weights the top 35% of stocks by the sorting characteristic by only
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Fig. 9. Relative weights on tertile (top 35%) and signal-weighted strategies. The figure shows the

relative weights on individual stocks in the long side of long/short equity strategies, as a function of

the cross-sectional rank of the stocks on the sorting characteristic. Weights are given relative to the

weights put on stocks in the tertile sorted (top 35%) portfolio (dotted line). The dashed line shows

rank-weighted strategies, and the solid line shows z-score weighted strategies.

23 cents. The impact of this relatively modest deviation is holdings is also unclear, as

relative to the quantile portfolio, the z-score weighted portfolio overweights the stocks

with the most extreme and most marginal characteristic rankings, and underweights those

with moderately strong characteristic rankings. The rank-weighted strategies differ even

less, deviating from the quantile portfolio’s holdings by only 17 cents per dollar.

These similarities are reflected in the performance of strategies constructed by quantile

sorting, rank-weighting, and z-score weighting. Table 2 compares the performance of
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value-minus-growth (VMG) strategies, based on book-to-market, constructed using the

three different methodologies.5 It also compares strategies that are equal and value

weighted. The table provides compelling evidence that the most relevant feature of

rank-weighting or z-score weighting is the fact that these weighting schemes weight

without respect for capitalization, and thus look like equal weighted, not value weighted,

strategies. Similarly, the most relevant feature of the rank and capitalization weighted or

z-score and capitalization weighted strategies is the fact that they weight proportional to

capitalization, and thus look like value weighted, not equal weighted, strategies.

Panel A regresses the returns to the rank-weighted VMG strategy on to the returns to an

equal-weighted, tertile sorted VMG strategy, and onto a rank and capitalization weighted

VMG strategy. It shows that the rank-weighted strategy is almost indistinguishable from the

simple equal-weighted, tertile strategy, which explains 99.4 percent of its return variation.

The rank-weighted strategy and the rank and capitalization weighted strategy are much

less correlated, and actually do not even have a significant relation, after controlling for the

performance of the equal-weighted, tertile sorted strategy.

Panels B through D tell similar stories. The z-score weighted strategy looks like an

equal weighted, tertile strategy, not a z-score and capitalization weighted strategy. The rank

and capitalization weighted, and z-score and capitalization weighted, strategies both look

like value-weighted, tertile sorted strategies, not like rank-weighted or z-score weighted

strategies.

Overall, the evidence is remarkably consistent. The use of quantile sorting, or rank

or z-score weighting, has little impact on the performance of the strategies, which always

look highly similar. The choice of equal-weighting or value-weighting for the capitalization

multiplier, however, has a material impact on the nature of the strategies.

5Because of the extreme skew in book-to-market, I use normal z-scores, zi;t D
N �1

�

.ri;t � 1=2/=.maxj frj;t g C 1=2/
�

where ri;t is firm i ’s B/M rank at time t .
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Table 2. Rank weighted, normal z-score weighted, and quantile sorted strategy relations

The table reports results from time-series regressions of value-minus-growth (VMG) strategy returns onto the

returns of other VMG strategies. Stocks are weighted in proportion to a demeaned signal of book-to-market

(quantile sorted using the high and low 35%; rank-weighted; or normal z-score weighted, where zi;t D
N �1

�

.ri;t � 1=2/=.maxj frj;t g C 1=2/
�

and ri;t is firm i ’s B/M rank at time t). Portfolios are rebalanced

annualy, at the end of June. Data come from CRSP and Copmustat, and the sample covers July 1963 through

December 2014.

Rank weighted

Explanatory strategies (1) (2) (3) (4)

Panel A: y Dy Dy D rank weighted VMG

˛ 0.78 0.02 0.57 0.02

[6.42] [2.28] [6.25] [2.19]

Equal weighted VMG 1.01 1.02

[320.4] [236.2]

Rank and cap weighted VMG 0.70 -0.00

[22.6] [-0.85]

Adj.-R2 99.4 45.3 99.4

Panel B: y Dy Dy D Normal z-score weighted VMG

˛ 0.82 0.04 0.60 0.04

[6.50] [2.16] [6.28] [2.10]

Equal weighted VMG 1.05 1.05

[177.0] [130.6]

Normal z-score and cap weighted VMG 0.69 -0.00

[22.3] [-0.61]

Adj.-R2 98.1 44.6 98.1

Panel C: y Dy Dy D rank and cap weighted VMG

˛ 0.31 0.01 -0.20 -0.02

[2.63] [0.66] [-2.22] [-0.99]

Value weighted VMG 0.99 0.96

[166.9] [126.8]

Rank weighted VMG 0.65 0.05

[22.6] [6.81]

Adj.-R2 97.8 45.3 98.0

Panel D: y Dy Dy D Normal z-score and cap weighted VMG

˛ 0.33 0.02 -0.20 -0.02

[2.70] [0.97] [-2.14] [-0.71]

Value weighted VMG 1.04 0.99

[132.5] [101.0]

Signal weighted VMG 0.65 0.06

[22.3] [6.84]

Adj.-R2 96.6 44.6 96.8
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B. Densities for t-statistics, signal weighted strategies
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Fig. 10. Empirical t-statistic distribution for best k-of-n strategies, signal-weighted signals. Panel A shows

the case of pure selection bias (k D 1), for n 2 f1; 2; 4; 6; 10g; Panel B the case of pure overfitting bias

(k D n), for n 2 f2; 3; 5g; and Panel C the combined case, when n D 2k for n 2 f2; 3; 5g. Distributions are

bootstrapped from 10,000 draws of n randomly generated signals, and kernel smoothed with a bandwidth of

0.2. Strategies are signal-and-cap weighted, with stocks held in proportion to both market capitalization and

the demeaned signal used for strategy construction, and rebalanced annually, at the end of June. Return and

capitalization data come from CRSP. The sample covers July 1993 through December 2014.
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C. Best kkk-of-nnn critical values, without cap weighting
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Empirical 5% critical values, general cases (arbitrary k � n)

n D 100

n D 40
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Number of signals employed (k)

Fig. 11. Five percent critical t-statistics for best k-of-n strategies, without capitalization weighting.

The figure shows 5% critical thresholds for strategies selected using a signal constructed by

combining the best k D 1; 2; :::; 10 performing signals, when the investigator considered n 2
f10; 20; 40; 100g candidate signals. Solid lines show the cases when the composite signal is

constructed by equal-weighting the k best performing candidate signals, and dotted lines the cases

when the composite signal is constructed by signal-weighting the signals. Critical values come from

generating 10,000 sets of n randomly generated signals. Strategies are signal weighted, with stocks

are held in direct proportion to the demeaned signal used for strategy construction, and rebalanced

annually, at the end of June. Return and capitalization data come from CRSP, and the sample covers

July 1993 through December 2014.
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D. Critical value approximation

Recall, from equations (3) and (4), that

tMV
n;k D

Pk
iD1 t.nC1�i/p

k
(19)

�

tMVE
n;k

�2 D
k
X

iD1

t2
.nC1�i/: (20)

Then the top k order statistics of the standard uniform random variable,

U.n/; U.n�1/; :::; U.nC1�k/ , are distributed uniformly on the interval ŒU.n�k/; 1�, so

k
X

iD1

t.nC1�i/ D k�
�

t.n�k/

�

C
k
X

iD1

��

ti
ˇ

ˇti > t.n�k/

�

� �
�

t.n�k/

��

; (21)

where �.x/ � EŒ�j� > x� D n.x/=N.�x/ denotes the inverse Mill’s ratio. The first

term on the right hand side of the previous equation inherits the approximate normality of

U.n�k/, with mean and variance, using t.n�k/ � N �1
�

1
2
.1 C U.n�k//

�

and letting �n;k �

N �1
�

E
�

1
2

�

1 C U.n�k/

���

D N �1
�

1 � kC1
2.nC1/

�

and �n;k � �.�n;k/, given by

E
�

k�
�

t.n�k/

��

� k�n;k (22)

Var
�

k�
�

t.n�k/

��

� k2 Var
�

�0.x/
ˇ

ˇ

�n;k
�
�

N �1
�0

.x/
ˇ

ˇ

E Œ 1
2.1CU.n�k//�

� U.n�k/

2

�

D k2.n � k/ .�n;k � �n;k/2

.k C 1/.n C 2/
; (23)

where the last equality follows from �0.x/ D �.x/2�x�.x/ and
�

N �1
�0

.x/ D 1=n.x/, and

because the order statistics of the standard uniform random variable have beta distributions,

U.n�k/ � B.n � k; k C 1/, so E
�

1
2

�

1 C U.n�k/

��

D 1 � kC1
2.nC1/

and Var
�

U.n�k/

�

D
.n�k/.kC1/

.nC1/2.nC2/
.
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The second term on the right hand side of equation (21) is mean zero, converges to

normality for large k by the central limit theorem, and has a variance of approximately

kVar
�

ti
ˇ

ˇti > �n;k

�

D k
�

1 C �n;k�n;k � �2
n;k

�

: (24)

Taken together these imply tMV
n;k

approx:� N
�

�
tMV
n;k

; �2
tMV
n;k

�

where

�
tMV
n;k

D
p

k �n;k (25)

�2
tMV
n;k

D 1 C �n;k�n;k � �2
n;k C k.n�k/.�n;k ��n;k/

2

.kC1/.nC2/
: (26)

Then

p D P
�

tMV
n;k > t�

n;k;p

�

� P
�

�
tMV
n;k

C �
tMV
n;k

� > t�
n;k;p

�

D 1 � N

 

t�

n;k;p
��

tMV
n;k

�
tMV
n;k

!

;

which implies

t�
n;k;p � �

tMV
n;k

C �
tMV
n;k

N �1.1 � p/ : (27)
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Similarly,
�

tMVE
n;k

�2

is approximately normally distributed. Its mean is

E
h

�

tMVE
n;k

�2
i

D E
h

E
h

�

tMVE
n;k

�2 ˇ
ˇ t.n�k/

ii

(28)

� E
h

�

tMVE
n;k

�2 ˇ
ˇ t.n�k/ D �n;k

i

(29)

D kE
�

t2
i

ˇ

ˇ ti > �n;k

�

(30)

D k .1 C �n;k�n;k/ ; (31)

where we have again used the fact that the top k order statistics of a uniform random

variable are distributed jointly uniformly over the interval exceeding the next highest order

statistic. Its variance is

Var
�

�

tMVE
n;k
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D Var
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E
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�
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C E
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�2 ˇ
ˇ t.n�k/
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: (32)

For the second term on the right hand side of the previous equation,

E
h

Var
�

�

tMVE
n;k

�2 ˇ
ˇ t.n�k/

�i

� Var
�

�

tMVE
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ˇ t.n�k/ D �n;k
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�

(33)

D k
�

�3
n;k�n;k C 3 .1 C �n;k�n;k/ � .1 C �n;k�n;k/2

�

;

where the last line follows from the known conditional moments of the normal distribution.
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For the first term on the right hand side of equation (32), note that

E
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and
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.k C 1/.n C 2/
; (36)

where the last equality follows from the results of equation (23), together with the fact that

Œx�.x/�0 D �.x/
�

1 C x�.x/ � x2
�

D �0.x/
�

1Cx�.x/2�x2

�.x/�x

�

.

Taken together these imply
�
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Then
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