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The More Efficient, the More Vulnerable!

Abstract

We extend the limited arbitrage model of Shleifer and Vishny (1997) to an intertem-

poral model while simplifying a funding cost structure. The model implies that the

equilibrium price is more volatile during a crash than during a tranquil market period.

More importantly, a seemingly more efficient market is more vulnerable to a crash

and shows more extreme tail volatility and a larger difference between tail volatility

and non-tail volatility. We empirically examine such implications in a U.S. interest

rate swap market. The mean-reversion speeds of slope and butterfly spreads between

swap yields are strongly associated with tail behavior of those spreads, which is in

compliance with our model.



1 Introduction

It is the calm and silent water that drowns a man.

–Ghanaian proverb

No arbitrage is one of the fundamental concepts in finance. Theoretically speaking, no

arbitrage is achieved when the prices of all security are determined such that any state

security with a dollar payoff a.k.a. ’Arrow-Debreu security’ is positively priced. Harrison

and Kreps (1979) and Harrison and Pliska (1981) show that given the well-known one-

to-one correspondence between the state price and the equivalent martingale measure, no

arbitrage condition is satisfied when the equivalent martingale measure exists and it is

strictly positive across all states. In contrast, the law of one price, which is better known,

indicates that any assets with the same payoff should be priced the same. Harrison and

Kreps (1979) show that the law of one price is a subset condition of no arbitrage condition

and it requires simply the existence of equivalent martingale measure without restrictions

on its signs.

The arbitrage transactions, which attempt to monetize the discrepancy of a particular as-

set’s market price from its fundamental value, play a critical role of policing and eliminating

such discrepancy. The textbook version of the efficient market hypothesis argues that such

arbitrage transactions are strong enough to eliminate any market disequilibrium instanta-

neously. Kyle (1985) defines the market resilience, a facet of liquidity, as the speed with

which prices revert to their equilibrium level after a large shock in the transaction flow.

The activity of arbitrage transactions per se is the key determinant of the market resilience;

the more active the arbitrage trades, the more resilient the market becomes. Therefore,

textbook efficiency implies the ‘infinite’ speed of market resilience, which is durable only

if arbitrage transactions can be implemented in a perfect market, i.e., no market frictions.

Shleifer and Vishny (1997) argue that such textbook arbitrage is at odds with reality. They

theoretically explore the reason arbitrage fails to eliminate disequilibrium and show that

aribtrage becomes ineffective in extreme circumstances, when market prices diverge far

from fundamental values. Their study suggests two components as the cause of limits to

arbitrage. The first is friction. Gromb and Vayanos (2010) classify market frictions into

three categories: short-sale constraints, leverage constraints and equity capital constraints.

For example, arbitragers would not be able to fully exploit arbitrage opportunities due to

an increase in borrowing costs or other borrowing constraints. Furthermore, borrowing ca-

pacity is positively associated with collateral values, which are an outcome of past trades.

Therefore, disequilibrium becomes more pronounced after arbitragers experience capital

losses from existing positions, which abates their borrowing capacity. The second com-
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ponent is demand shock. Arbitragers tend to rely upon short-term funding with limited

borrowing capacity. As such, when noise traders deviate market prices farther from their

fundamental values, they may experience interim losses, which may not be recoverable

due to a shrinkage on leverage capacity. The arbitragers recognize such risk and would

strategically a priori downsize their trade size or even shun the trade after all. If the ar-

bitragers are risk averse, this risk further deters the arbitragers from conducting arbitrage

transactions.

In this paper, we add a new insight to the ‘limits to arbitrage’ literature by introducing

an intertemporal aspect of arbitrage. Specifically we extend a simplified version of Shleifer

and Vishny model by adding one more time period. Such an extension is non-trivial due

to the nature of path-dependency through wealth effect in endogenous variables such as

leverage ratios and market prices. The results deliver a number of interesting implications

for security prices.

Firstly, we show that the past performance does not make much impact on the security

price in a mediocre state. In contrast, its impact is pronounced in a ‘crash’ state. In a

crash state, the arbitrager has to take a substantially high leverage to take advantage of

mispricing. However, this is the very state where the leverage constraint is most binding.

How much leverage the arbitrager should take depends upon how much capital loss or gain

has been cumulated from past trades. Consequently, the performance of the arbitrager

preceding the crash, has the most critical impact on the security price. This indicates that

the volatility of security price during the crash should be greater than the volatility during

the tranquil time.

Secondly, when the evolution of states entails a higher probability of reversion from a

disequilibrium state to a normal state, the security price is more likely to plunge in a

crash state. That is, when the security price shows a stronger reversion to a normal state

during a tranquil time, it is more vulnerable to a crash. This is a striking result because a

seemingly more efficient market under a normal market condition would be more frail and

more likely to be dismantled during times of crises.

Thirdly, we also find that when the security price shows a stronger reversion to a normal

state during a tranquil time, its volatility during times of crises is larger. That is, the crash

time volatility difference between a seemingly more efficient security and a seemingly less

efficient security is much larger than the tranquil time volatility difference betwen the two.

We empirically investigate the aforementioned implication of our model using a U.S. interest

rate swap market. Using thirteen different tenors from one year to thirty years, we construct

78 slope spreads and 286 butterfly spreads. These are the most popular instruments for
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relative value trades a.k.a. ‘fixed income arbitrage’ adopted by hedge funds and proprietary

trading desk of global investment banks. These spread trades attempt to monetize the

abnormal widening or narrowing of the spread among two or three swap legs (even four

legs, which is called ‘box’ trade, mostly constructed from two asset swap spreads). Because

the spreads contain simultaneous long and short positions on multiple legs, they tend to

cancel out systematic risk such as duration risk. However, the payoff profile of the fixed

income arbitrage is, in general, very small so that leverage is widely employed to magnify

potential gains, typically five to fifteen times the asset base’s value.

An empirical analysis based on the swap data from July 23, 1998 to May 11, 2017 shows an

overall compliance with the theoretical predictions. First, we find that the mean-reversion

speed of the spreads is positively associated with the extreme movement measures of the

spreads. Specifically, the spreads with higher mean-reversion speed tend to have the greater

absolute z values of extreme percentiles such as 0.05%, 1% and 2% and also correpsondingly

98%, 99% and 99.5%. When we use the corresponding expected shortfall risk values as

an alternative proxy for extreme movement (crash values), the result remains almost the

same, albeit stronger. As a result, the kurtosis of distribution of the spreads demonstrate

strong positive relations with the mean-reversion speeds. These results imply that the

more seemingly efficient spreads with faster mean-reversion are more susceptible to extreme

change in their values, thereby more vulnerable to a crash, which our model predicts.

In addition, we investigate whether the mean-reversion speed is also positively associated

with the conditional volatility upon the aforementioned percentiles. The empirical results

demonstrate a strong positive relationship between the two, which supports our model,

which predicts that the spreads with stronger mean reversion speed should be more likely

to exhibit higher volatility at crash states. In contrast, we detect no relationship or a much

weaker relationship between the mean-reversion speed and non-tail volatility.

This paper is organized as following. In Section 2, we build up a four-period aribtrage

transaction model wherein a sequence of equilibrium prices is determined and thus we

can analyze the impact of limits of arbitrage on the efficiency and the vulnerability. The

empirical analysis on the major predictions of the model using the U.S. interest rate swap

data is examined in Section 3. Proofs of propositions are deferred to Appendix. Section 4

concludes.
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2 The Model

The basic structure of our model follows Shleifer and Vishny (1997). We extend their

model by adding more states and time periods in order to explore the path-dependency of

the market price. We also simplify the structure of funding cost to avoid corner solutions

without losing economic intuitions underlying their model. We consider an asset market

the fundamental value of which is assumed to be V . In this market, there are two market

participants: noise traders and an arbitrager. The noise traders trade for liquidity reasons

not related to the asset’s fundamental value thereby making deviation of its market price

from the fundamental value. Without loss of generality, we assume that the amount of

deviation is random but non-positive; that is, noise traders may experience pessimistic

shocks as in Shleifer and Vishny (1997).1 In contrast, the arbitrager, who knows the

fundamental value, attempts to monetize the mispricing of the asset which is triggered by

the noise traders.

There are four time periods: t = 0, 1, 2 and 3. The fundamental value of the asset is V

for all t, which only the arbitrager recognizes. In contrast, the noise traders may trigger

negative shocks to the market price. The state space of negative noise trader shocks is

illustrated in Figure 1. Therein the amount of shock at t = 0 is −1
2S (S > 0), which

is known to the arbitrager, but the noise trader shocks in the suqsequent periods are

uncertain. For example, the states at t = 1 is binomial such that the amount of shock is

either zero with probability of (1− q) or −S with probability of q where 0 < q < 1. Going

forward to t = 2, the state space is trinomial; the amount of shock is 0, −S and −2S

with probability of 1 − q, 1
2q and 1

2q respectively, regardless of the state at t = 1. So we

implicitly assume path-independence of conditional probability of each state. For example,

the occurrence of zero noise trade shock is 1− q either when the state at time t = 1 is the

first node or when it is the second node. The amount of noise shock is equal to 0 at t = 3

for sure, and hence the market price equals V .

Overall, the structure of state space is similar to that of Shleifer and Vishny (1997). For

comparison, Figure 1 exhibits the state space assumed in their model as thick lines, which

is nested in our state space. As such, we add one more time period and one more state

at t = 2. We consider such an extension for two reasons. First, by adding more states

at t = 2, we can separate ‘crash’ shock, −2S from reasonably ‘accommodative’ shock −S.

Note that the initial amount of shock is −1
2S at t = 0. As such, the incremental amount of

shock to the arbitrager in the second state at t = 2 is only −1
2S. In contrast, if the third

1The main result of our analysis holds in a symmetric way when the noise traders may experience

optimistic shocks, as long as the funding structure is symmetric between long and short positions.
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state occurs, the arbitrager has to bear −3
2S, which is three times larger. In addition, the

amount of shock, −S, may occur at t = 1 and t = 2 whereas the shock, −2S, comes into

being only once over the entire periods in our analysis. As such, the state of −2S can be

thought of as a tail risk in terms of its magnitude as well as its probability of occurrence.

In contrast, the state of −S can be regarded as a shock during a tranquil time period.

Second, adding one more time period enables us to analyze the impact of past performance

on the market price, as will be shown below. For example, the second state at t = 2 can

be reached either through the first state or the second state at t = 1. If it is reached via

the first state at t = 1, the arbitrager earns profit at t = 1. On the contrary, she makes a

loss at t = 1 if it is reached via the second state. Then the intuition of Shleifer and Vishny

(1997) kicks in. They assume that the availabile investment amount of the arbitrager is

an increasing function of her past return and they call this ‘performance-based arbitrage’.

In our model, instead, we assume that the funding cost is proportional to the amount of

leverage. Consequently, if the arbitrager earned positive profit in the prior period, she

affords to take more leverage because the funding cost is cheaper and vice versa. Thus,

the arbitrage is dependent upon her past performance, which is similar to Shleifer and

Vishny. As shown below, our assumption is easier to analyze with and we can avoid corner

solutions under some regularity conditions.

Assumption 1 (Funding Cost) We assume the following funding cost structure. Sup-

pose that the arbitrager’s wealth is W and borrows L ≥ −W . Then, the funding rate is

assumed to be proportional to leverage ratio, ψ = L
W ; e.g,

c(ψ) = r + φψ1ψ>0, (1)

where r is the risk-free rate and 1ψ>0 is an indicator variable with a value of 1 if leverage

is employed and 0 otherwise. φ > 0 is a sensitivity of the funding rate to the leverage.

ψ ∈ [−1,∞). Without loss of generality, we assume r = 0.

Now let’s solve for equilibrium prices at each state and each time. To do so, we first

assume that the arbitrager is a representative one and behaves as a price taker. We call

her ‘schizophrenic arbitrager’ following the term raised by Hellwig (1980) in the sense that

she takes the equilibrium price as given despite the fact that her own transactions influence

that price. In addition, we assume that she attempts to maximize her expected wealth in

the next period as opposed to her expected terminal wealth; she is a ‘myopic arbitrager.’

In the second model, we avoid these undesirable features of the schizophrenic arbitrager by

having her take into account the effect her demand has on that equilibrium price. Therein

she strategically adjusts her demand or equivalently the leverage ratio to her benefit to
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maximze her terminal wealth. So we call her ‘strategic arbitrager.’ In reality, the traders

of hedge funds and global investment banks are sophisticated enough to digest the potential

impact of her trades on the market price. In that sense, the strategic arbitrager model seems

to better reflect the real world.

However, the literature on limited arbitrage including our model assumes that the mispric-

ing of the asset price will be corrected surely at the terminal date of the analysis. Of course,

the asset price will converge to its fair value at its redemption date, but, in reality, it might

take an extensive amount of time to converge. Thus it may be difficult for her to make a

strategic arbitrage intertemporally. In addition, an arbitrager may be nothing more than

an atom in a continuum of arbitragers and she may not recognize that she belongs to this

huddled mass of arbitragers whose aggregate demand impacts the price. Therefore, the

‘strategic’ capacity assumed in the strategic arbitrager model may be overvalued and fails

to reflect the real picture of arbitrage. Combining these two concerns, we presume that

the real world arbitragers are somewhere in the middle. This is the reason we investigate

both models altogether.

2.1 Schizophrenic Arbitrager

In this section, we assume that the risk-neutral arbitrager behaves as a price taker. Due

to the assumed structure of funding cost, the equilibrium price and other endogenous

variables are path-dependent via a change in wealth. As is the case with most path-

dependent intertemporal equilibrium, we are, unfortunately, not able to analytically solve

the equilibrium. Even a numerical solution is not trivial and we need to combine a backward

induction with a forward deduction to solve the equilibrium.

We first explore a solution for leverage ratio,ψ, given the structure of funding cost. At

a particular state i at time t, sti along with Wt, the arbitrager maximizes her expected

wealth at t+ 1 such that

Max{ψti∈[−1,∞)}E[Wt+1|sti,Wti] = Wt

[
(1 + ψti)

E(Pt+1|sti)
Pti

− ψti(1 + φψti1ψti>0)

]
. (2)

The following proposition summarizes the optimal leverage ratio.

Proposition 1 The arbitrager’s optimal leverage ratio is

ψ∗ti =


E(Pt+1|sti)

Pti
−1

2φ > 0 if E(Pt+1|sti)
Pti

> 1

∈ [−1, 0] if E(Pt+1|sti)
Pti

= 1

−1 else

(3)
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However, the above optimal leverage ratio has an undesirable feature that an equilibrium

may not exist due to a kink in the cost function. For example, suppose that we compute

the interior solution, ψ∗ti =
E(Pt+1|sti)

Pti
−1

2φ . Note that the market clearing condition yields

Pti = V − Sti + Wti(1 + ψ∗ti). Suppose that the resulting value of Pti given ψ∗ti leads

to Pti > E(Pt+1|sti). As a response, the arbitrager does not take any investment in

the security, i.e., ψti = −1. Then, a new market price Pti = V − Sti could be smaller

than E(Pt+1|sti), which, in turn, validates a positive leverage ratio. Consequently, the

equilibrium price and the optimal leverage ratio could not be compliant with each other

and thus the equilibrium may not exist.

A similar problem occurs when E(Pt+1|sti)
Pti

= 1. Since the return on investment is identical

between the risk-free asset and the risky asset, the arbitrager would be indifferent between

the two assets and thus ψ∗ti ∈ [−1, 0]. However, Pti = V − St + Wti(1 + ψ∗ti) and thus the

price itself varies with the difference choice of ψ∗ti. Again, there is no equilibrium which

supports the price and the leverage ratio (demand for the asset).

This non-existence of equilibrium is driven by the fact that the optimal ψ∗ti depends on Pti

through three channels. First, its interior solution is a direct function of Pti. Second, the

market clearing condition designates a relatioship between ψti and Pti. Finally, what kind of

solution for ψti should be adopted is determined by the inequality condition, E(Pt+1) ≶ Pti
and that condition itself entails the price, Pti. In general, the first two conditions are

sufficient for the existence of the equilibrium. However, the last channel in our model

behaves as a sort of overidentifying restriction and the equilibrium may not exist.

The easiest way of ensuring the existence of equilibrium is to impose restrictions of struc-

tural parameters which preclude the occurrence of E(Pt+1|sti)
Pti

≤ 1. Then we always have

an interior solution for ψ and thus the equilibrium. First, we assume 0 < q < 1
2 to ensure

that the expected return of the asset in each of four nodes (the nodes subject to pessimistic

shock) is strictly positive in the absense of arbitrage.2 Further, we impose the boundary

condition on S.

Assumption 2 (Boundary Conditions) We impose the following boundary condition

on the pessimistic noise shock, S:

2W0

1− 2q
< S < S (4)

2At t = 0, the expected return in the absence of arbitrage is positive if E(P1) = (1− q)V + q(V −
S) > P0 = V − 1

2
. This yields q < 1

2
. Similarly, at s12, the expected return is positive if E(P2|s12) =

(1− q)V + 1
2
q(V − S) + 1

2
q(V − 2S) > P12 = V − S, which leads to q < 2

3
. Combining the two, q < 1

2
.
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where

S '
−12φV +

√
(12φV )2 + 16φV 2

{(
2− 3

2q
)2 − 1− 8φ

}
2
{(

2− 3
2q
)2 − 1− 8φ

} ≤ V

2
(5)

Below, we show that under the boundary conditions, we can avoid corner solutions. First,

we begin with the left inequality condition in Assumption 2.

Proposition 2 If 2W0
1−2q < S, the arbitrager takes leverage at every state subjec to negative

noise shock; i.e., ψti > 0 for all sti with Sti > 0.

Proposition 2 states that if the magnitude of pessimistic shock is greater than a certain

amount, the schizophrenic arbitrager always uses leverage.

Another issue to deal with is negative wealth. Suppose that the ex-post path of states is s12

at t = 1 and s23 at t = 2. Then the arbitrager makes a loss twice in a row and her wealth

at s23 might be negative; i.e., the fund collapses. The collapse of the fund itself may be an

interesting topic, but how to deal with it is related to the liquidation process of a hedge

fund. To prevent it a priori, most of hedge funds is equipped with their own internal risk

management regulation such that if the fund loses more than a certain percentage, the fund

itself will be liquidated. This kind of internal risk control is asserted by a contract between

the fund and its investors. This issue itself is an interesting topic for further analysis but

is beyond the scope of this paper.3 So we preclude a collapse of the fund by imposing a

certain restriction on structural parameters. The approximate restrictions are summarized

in Proposition 3, which validates the upper bound in Assumption 2. From here on, we

simplify notations in expressing path-dependency such that ψst+1i|stj for (ψst+1i |stj). For

example, ψ22|12 refers to the leverge ratio at s22 when s22 is realized via s12. Similar

subscripts will be used to express path-dependency in other relevant variables.

Proposition 3 W23|12 > 0 if

S < S '


−12φV+

√
(12φV )2+16φV 2

{
(2− 3

2
q)

2−1−8φ
}

2
{
(2− 3

2
q)

2−1−8φ
} if

(
2− 3

2q
)2 − 1− 8φ ≶ 0.

V
3 if

(
2− 3

2q
)2 − 1− 8φ = 0

Thus, the (approximate) upper bound on S proposed in Assumption 2 guarantees the

solvency of the arbitrager and hence non-degenerate solution for the equilibrium. In sum-

mary, under the boundary conditions, the arbitrager always employs leverage except when

3See Ahn, Kim and Seo (2017) for a fund run driven by such a contract coupled with other frictions.
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negative noise shock does not exist, i.e., Sti = 0, and her fund is ensured to be solvent.

Consequently we can alway find an interior solution to the equilibrium.

Proposition 4 Under the boundary conditions on S in Assumption 2, which ensure the

existence of interior solutions to ψ∗ti and positive wealth of the arbitrager, the equilibrium

price at sti is

Pti =
bti +

√
b2ti + 8φWtiE(Pt+1|sti)

4φ
(6)

where bti = 2φ(V − Sti) + (2φ− 1)Wti.

Proof: Plugging the interior solution to ψ∗ti in Proposition 1 into the following market

clearing condition

Pti = V − Sti +Wti (1 + ψ∗ti) ,

and solving for Pti yields the desired result. �

To solve for the equilibrium, we have to note that the equilibrium price is inevitably path-

dependent. The market clearing condition in each node is Pti = V −Sti+Wti(1 +ψti), and

thus the price is affected by Wti.
4 Below we discuss how to find a solution, numerically.

Below we begin with the equilibrium from t = 2 and move back to t = 0.

Equilibrium at t = 2

Following Proposition 1 and Proposition 3, we can derive the equilibrium price and the

optimal leverage.

• i = 1 :

Since S21 = 0, the asset is not subject to mispricing and thus the arbitrager becomes

dormant.5

4However, it does not necessarily mean that the intuition underlying our model is non-Markovian. It is

an outcome of the fact that the state space is governed by two state variables: sti and Wti. We can extend

the number of time periods and the number of states enough to make the conditional expected return

identical (in the absence of arbitrage) at the same state across different time. Then the optimal leverage

ratio at the same state with the same wealth will always be the same since she is myopic.
5She may invest a part of her wealth in the asset, e.g., −1 < ψ21 < 0 since the interest rate is zero.

Then the resulting equilibrium price is greater than its fair value on the back of the arbitrager’s excess

demand. The equilibrium does not exist since the expected return of the asset becomes negative. To

prevent it, we assume that she does not invest in the asset when there is no noise shock. This assumption is

sensible in the sense that the arbitrager monitors multiple asset markets to detect arbitrage opportunities.

When a particular market does not deliver an arbitrage opportunity, she may invest her wealth in arbitrage

opportunities somewhere else.
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The optimal leverage ratio and the equilibrium price are

ψ21|1j = 0

P21|1j = V
∀j = 1, 2 (7)

• i = 2, 3

Following Proposition 1 and Proposition 4, we can obtain the following optimal lever-

age ratio and equilibrium price:

ψ2i|1j =

V
P2i|1j

− 1

2φ
(8)

P2i|1j =
b2i|1j +

√
b22i|1j + 8φW2i|1jV

4φ
(9)

where b2i|1j = 2φ(V − S2i) + (2φ− 1)W2i|1j

S2i =

{
S if i = 2

2S if i = 3

for i = 2, 3 and j = 1, 2. Note that they are the functions of two state variables:

negative noise shock, S2i, and the wealth of the arbitrager, W2i|1j .

Equilibrium at t = 1

At t = 1, there are two states, j = 1 and j = 2.

• j = 1 :

Since S11 = 0, the optimal leverage ratio and the corresponding equilibrium price are

ψ11 = 0

P11 = V
(10)

• j = 2 :

Again, following Proposition 1 and Proposotion 3, the optimal leverage ratio and the

equilibrium price are

ψ12 =

E(P2|12)

P12
− 1

2φ
(11)

P12 =
b12 +

√
b212 + 8φW12E(P2|12)

4φ

where E(P2|12) = (1− q)V +
q

2
P22|12 +

q

2
P23|12

b12 = 2φ(V − S) + (2φ− 1)W12
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However these solutions are not complete yet because we do not know P22|12 and

P23|12, which are the functions of W22|12 and W23|12. However, W22|12 and W23|12

are also the functions of P22|12 and P23|12 respectively. Underlying intuition is as

following: the price, for example, P22|12, depends on how wealthy the arbitrager

is then (= W22|12), and also how much leverage she employs (=ψ22|12). But, in

turn, the wealth of the arbitrager (= W22|12) is affected by the realized price, P22|12.

Futhermore, the optimal leverage ratio ψ22|12 is affected by P22|12. Unfortunately we

are not able to analytically solve these simultaneous nonlinear problems. As such, we

numerically solve for W22|12 as a function of W12, ψ12, P12 only, not contemporaneous

variables such as ψ22|12 and P22|12. A similar problem applies to W23|12.

First, let us begin with W22|12. Note that

W22|12 = W12

[
(1 + ψ12)

P22|12

P12
− ψ12(1 + φψ12)

]
. (12)

Plugging (9) into (12) yields

W22|12 = W12

(1 + ψ12)
b22|12 +

√
b222|12 + 8φW22|12V

4φP12
− ψ12(1 + φψ12)

 .
Note that b22|12 itself is a function of W22|12 as well since b22|12 = 2φ(V − S) + (2φ−
1)W22|12. Solving the above equation for W22|12 leads to a quadratic equation for

W22|12. Its solution is

W22|12 =
−B22|12 +

√
B2

22|12 − 4A C22|12

2A
(13)

where

A = η2 − (2φ− 1)2

η =
4φP12

(1 + ψ12)W12
− (2φ− 1)

B22|12 = 2η υ22|12 − 4φ(2φ− 1)(V − S)− 8φV

C22|12 = υ2
22|12 − 4φ2(V − S)2

υ22|12 =
4φP12

(1 + ψ12)
ψ12(1 + φψ12)− 2φ(V − S).

A similar analysis shows that W23|12 is

W23|12 =
−B23|12 +

√
B2

23|12 − 4A C23|12

2A
(14)
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where

B23|12 = 2η υ23|12 − 4φ(2φ− 1)(V − 2S)− 8φV

C23|12 = υ2
23|12 − 4φ2(V − 2S)2

υ23|12 =
4φP12

(1 + ψ12)
ψ12(1 + φψ12)− 2φ(V − 2S).

Note that W22|12 and W23|12 are expressed as the functions of W12, ψ12 and P12.6 A

remaining task is to solve the optimal ψ12 and the equilibriium price P12 given W12

by the following procedure of iteration. Beginning with an initial value of ψ0
12, the

kth iteration is composed of

(1) Take the given value of ψk12

(2) Compute P k12 = V − S +W12(1 + ψk12)

(3) Given W12, ψk12, P k12, compute W k
22|12 and W k

23|12 using (13) and (14) respectively.

(4) Compute P k22|12 and P k23|12 using (9).

(5) Put P k22|12 and P k23|12 into (11) and calculate an updated value of ψk+1
12 .

(6) Go to step (1) and iterate the procedure until ψk+1
12 = ψk12.

Equilibrium at t = 0

So far we express the optimal leverage ratios, the equilibrium prices and the arbitrager’s

wealth as the functions of W12. We use W12 as an intermediary variable which delivers

‘consistency’ required for the equilibrium. Here given the initial wealth of the arbitrager,

W0, we use a forward deduction analysis. Specifically, with an initial value of W 0
12, we

follow the following interative procedure:

(1) Take the given value of W k
12.

(2) Given W k
12, find a solution for P k12 from the iterative numerical procedure in the above

at t = 1.

(3) Compute P k0 using

P k0 =
b0 +

√
b20 + 8φW0E(P1)

4φ

where E(P1) = (1− q)V + qP k12

b0 = 2φ(V − 1

2
S) + (2φ− 1)W0

6Quick aside, B2
23|12 − 4A C23|12 > 0 is the exact condition for W23|12 > 0 whereas the upper bound on

S in Assumption 2 is an approximatation.
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(4) Compute the optimal leverage ratio given P k12:

ψk0 =

(1−q)V+qPk12
Pk0

− 1

2φ

(5) Compute a newly updated value of W k+1
12 :

W k+1
12 = W0

[
(1 + ψk0 )

P k12

P k0
− ψk0 (1 + φψk0 )

]
(6) Go to (1) and iterate until W k+1

12 = W k
12.

(7) After convergence, compute W11 = W0

[
(1 + ψ∗0) VP ∗0

− ψ∗0(1 + φψ∗0)
]
. At s11, the

arbitrager is dormant so that W21|11 = W22|11 = W23|11= W11. Then, using (8) and

(9), compute ψ22|11, ψ23|11 along with P22|11 and P23|11.

2.2 Strategic Arbitrager

Unlike the schizophrenic arbitrager, the strategic arbitrager is assumed to recognize that

her arbitrage transaction affects the price. Thus, she takes into account such an impact

on the price when she decides the leverage ratio. In addition, she maximizes her expected

terminal wealth, E(W3), thereby not being myopic. Thus she may intentionally downsize

her leverage even at a state with a fairly good arbitrage opportunity in anticipation of

bigger chance in the next period. All told, she can strategically adjust her leverage ratios

over time. Before we discuss how to solve the optimal leverage ratios and the equilibrium

price, let’s explore its economic implication.

At time t and state i, the arbitrager solves the same objective function in (2), when her

intertemporal concern is ignored. However, even in such a case, its first-order condition

becomes

∂E[Wt+1|sti]
∂ψti

= Wti

[
E(Pt+1|sti)

Pti
+
∂ {E(Pt+1|sti)/Pti}

∂ψti
(1 + ψti)− (1 + 2φψti)

]
= 0. (15)

In the square bracket, the sum of the first two terms is marginal revenue (MR) of the

arbitrage transaction and the last term is its marginal cost (MC). Breaking down the

marginal revenue, the first term is the expected return of the asset. The critical term is the

second term. This reflects how much the expected return per se changes when the leverage

ratio increases.

Proposition 5 At each state, in the neighborhood of the schizophrenic equilibrium, the

strategic arbitrager takes a less amount of leverage than her schizophrenic counterpart:

ψ
strategic
ti > ψschizo

ti .
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Proposition 5 states that the strategic investor takes a less aggresive leverage by taking into

account the effect her demand has on the equilibrium price. This shares the same intution

underlying the monopolistic producer. In a rational expectation model under asymmetric

information, Kyle(1989) demonstrates that the equilibrium prices reveal less information

than those in the presence of the schizophrenia problem. We share the same economic

intuition.

The strategic arbitrager also distinguish herself from the schizophrenic arbitrager by max-

imizing her expected terminal wealth at t = 3. In contrast, the schizophrenic arbitrager is

myopic and maximizes her expected wealth in the next period. Her optimization problem

is

max
{ψ}

E(W3) = (1− q)2W3|21|11 +
1

2
(1− q)qW3|22|11 +

1

2
(1− q)qW3|23|11

+q(1− q)W3|21|12 +
1

2
q2W3|22|12 +

1

2
q2W3|23|12, (16)

where

{ψ} = {ψ0, ψ11, ψ12, ψ21|11, ψ22|11, ψ23|11, ψ21|12, ψ22|12, ψ23|12}.

It is clear that at time 0, the strategic arbitrager strategically determines what she will

do at each state in the future. In that context, one thing worthy of mentioning is that

the strategic arbitrager model is free from the potential non-existence of equilibrium that

the schizophrenic arbitrager model suffers from. The stategic arbitrager can choose −1 <

ψti < 0 optimally. Unlike the schizophrenic arbitrager, she recognizes the impact of her

position on the asset price. Therefore she is always able to make positive the expected

return on the asset. In contrast, the schizophrenic arbitrager may use high leverage enough

to push down the expected return to a negative value since she does not recognize such

an impact. Thus the strategic arbitrager model does not need a lower boundary condition

documented in Assumption 2.

Appendix B describes in detail how to construct and solve the optimization problem in

(16).

2.3 The Properties of the Equilibrium

In this section, we discuss the equilibrium and its comparative statics in our model. We first

investigate a typical example of the schizophrenic arbitrager model along with the strategic

arbitrager model. By doing so, we are able to sort out unique features delivered by each

model. Then, we will move onto a comparative static analysis focusing particularly on q,

the probability of negative noise shock. To do so, we use the following values of structural
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parameters:

V = 1, W0 = 0.05 S = 0.25 φ = 0.1 and q = 0.05.

q = 0.05 means that each state exposed to negative shock has a 95% chance of reverting

to the fair value. φ = 0.1 is that if the arbitrager borrows 100% of his wealth, its funding

rate is 10%. It is easy to check that the combination of the above parameter values

satisfy the boundary conditions in Assumption 2, which ensures positive leverage ratios

and positive wealth of the arbitrager. The numerical solutions to the optimal leverage

ratio, the equilibrium price and the resulting wealth of the arbitrager are illustrated in

Figure 2(a) and Figure 2(b) for the models of a schizophrenic arbitrager and a strategic

arbitrager respectively. We first investigate the schizophrenic arbitrager model and then

discuss the stategic arbitrager model for comparision.

2.3.1 The Schizophrenic Arbitrager Model

First we examine the equilibrium of the schizophrenic arbitrager model illustrated in Fig-

ure 2(a)

Equilibrium at t = 0:

At t = 0, the arbitrager borrows 27.99% of her wealth (=ψ0).The resulting equilibrium

price (=P0) is 0.939. In the absence of her arbitrager transaction, the price would be 0.875(
= V − 1

2S = 1− 1
20.25

)
. Thus, her investment itself raises the market price by 0.064.

Equilibrium at t = 1:

If s11 is realized at t = 1, the market price recovers its fair value, V = 1 and her wealth

increases to 0.0538 with 7.6% gain. She is away from the market because the expected

return at t = 2 conditional upon s11 is negative. In contrast, if s12 is realized, the market

price (=ψ12) drops to 0.8313; the realized return of the security is -11.47%. However,

she loses more than that due to two driving forces: the leverage itself and the additional

funding cost. Altogether her loss is 15.4% and her wealth declines to 0.0423. At this state,

she employes leverage upto 83.13% to monetize the enlarged undervaluation.

Equilibrium at t = 2:

At s21, the equilibrium price is at its fair value and the arbitrager leaves the market because

of zero expected return. If this state is realized via s11, the arbitrager’s wealth (=W21|11)

is idential to her wealth at s11. In contrast, if the state comes through s12, the arbitrager’s

wealth (=W21|12) has increased from 0.0423 to 0.0552 .

(Tranquil State: s22) At s22, Sti = S and therefore the amount of negative noise shock

at this state is identical to s12. The magnitude of shock is mediocre and could happen
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before at t = 1 so we define this state as a ‘tranquil’ state. If this state is realized via s11,

her wealth (=W22|11) is still 0.0583. The market price (=P22|11) is 0.8509 and she employs

a leverage ratio of 87.63% (=ψ22|11). In contrast, if this state is arrived at through s12, her

wealth is reduced to 0.0384; the market price (=P22|12) is 0.8282 and her leverage ratio is

1.0375. Given that the amount of negative noise shock is the same across s12 and s21, the

equilibrium prices are comparable: 0.8313 (=P12), 0.8509 (=P22|11) and 0.8282 (=P22|12).

Among the three, P22|11 is the highest for obvious reasons; the arbitrager’s wealth (=W22|11)

is the highest and also she will make a sure gain at t = 3. In contrast, it is not clear which

one should be higher between P12 and P22|12; W12 is higher than W22|12, but the expected

return at s12 is lower than that at s22 via s12 (in the absence of an arbitrage). The result

shows that P12 is greater than P22|12 and thus the effect of higher wealth dominates the

effect of the lower expected return in this case.

(Crash State:s23) We call s23 as a ‘crash’ state given its massive amount of negative

shock (2S = 0.5) coupled with an extremely low probability of occurrence. In addition,

this amount of negative noise shock is unprecedented so it could be counted as an ex-

ceptionally rare event. At s23 via s11, the arbitrager’s wealth (= W23|11) is 0.0538 again.

The equilibrium price (=P23|11) is 0.6802 and the arbitrager steps up the leverage ratio to

2.3511 (= ψ23|11). In contrast, at the same state via s12, the arbitrager becomes penurious;

her wealth (=W23|12) is merely 0.0121, which means 75.8% of her original wealth is wiped

out! As such, despite her extensive leverage ratio (ψ23|12 = 3.9318), the equilibrium price

(=P23|12) is as low as 0.5598.

The results deliver two essential implications. First, despite the arbitrager’s aggressive

leverage, the price is not boosted much; the equilibrium price is only 0.5598 whereas its

value without arbitrage transaction is V − 2S = 0.5. The arbitrager’s wealth is extremely

low and consequently she does not afford to make a large amount of investment in the asset.

Specifically, her total amount of investment is as small as 0.0598. This is substantially lower

than 0.0782 at s22 via s11 despite the fact that the arbitrage opportunity is much more

favorable at s23. Note that the crash itself is a double-edged sword. On one hand, the

asset price plunges so that the arbitrager’s wealth is precipitated. On the other hand, the

setback in the asset price delivers an extraordinary opportunity for arbitrage. However, the

funding cost structure limits her leverage capacity; when outside funding is most needed,

the funding cost is most binding.

Secondly, the impact of the past history on the equilibrium price is quite different between

s22 and s23. As mentioned above, at the tranquil state, s22, the equilibrium prices are

0.8509 (=P22|11) and 0.8282 (=P22|12), which are very similar. In contrast, at the crash

state, they are 0.6802 (=P23|11) and 0.5598 (=P23|12), which are quite different from each
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other. As such, we can state that the price divergence (or volatility) of the equilibrium

price is much larger in the crash state than the tranquil state.

Result 1 The equilibrium price is more volatile during a crash than during a tranquil

market period.

Equilibrium at t = 3:

By construction, the price reverts to its fair value, V , at t = 3. Among the arbitrager’s

terminal wealth across different time-paths, W3|23|11 is the highest. The arbitrager made

a gain from t = 0 to s11 and then another gain from s23 to t = 3. She has never lost. In

contrast, W3|23|12 is the lowest and is even below her initial wealth. She lost twice in a

row, from t = 0 to s12 and from s12 to s23. She made a positive gain at s23 to t = 3, but

not enough to recoup her prior losses. It is driven primarily by the progressive funding

cost structure; however, the arbitrager’s failure to strategically manage the amount of

borrowing across time and state exacerbates the loss. The dollar amount borrowed are

0.0140 (=W0ψ0) at t = 0, 0.0390 (=W12ψ12) at s12 and 0.0477 (=W23|12 ψ23|12) at s23.

Remember that S0 = 0.125, S12 = 0.25 and S23 = 0.5. Thus when the amount of noise

shock doubled from 0.125 to 0.25, the arbirager jacked up the amount of borrowing by

2.79 (= 0.0390/0.0140) times. In contrast, when the noise shock doubled from 0.25 to 0.5,

the arbitrager increased the amount of borrowing by merely 1.22 (= 0.0477/0.0390) times.

At s12, she consumed most of her leverage capacity with expectation that the price would

revert to the fair value in the next period. As a result, when the nature bestowed a ‘better’

opportunity at s23, she ran out of fuel to accelerate the leverage.

2.3.2 The Strategic Arbitrager Model

Figure 2 (b) illustrates the equilibrium of the strategic arbitrager model. Overall the

results are more or less similar to those of the schizophrenic arbitrager model. However,

consistent with Proposition 5, the strategic arbitrager employs lower leverage across all

states by taking account of the impact of his investment on the market price. As a result,

P0 is lower and so are P12, P22|11, P23|11. In contrast, due to the less aggressive leverage

taken, particularly, at s12, her wealth at the crash state is better insulated and thus she

affords to substantially leverage her investment, which bolsters P22|12 and P23|12.

Most importantly, P22|12 is higher than P22|11 despite the fact that W22|12 is lower than

W22|11. In contrast, in the schizophrenic arbitrager model, P22|12 is lower than P22|11. This

difference highlights the distinguishable feature of the stratetgic arbitrager model. Note

that W22|11 is fixed at 0.0541. In such a case, the arbitrager is concerned about three effects
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delivered by ψ22|11. An increase in ψ22|11 increases the gross dollar return on investment

by enlarging the size of total amount of dollar invested. However, it lowers the expected

return of the asset by pushing up the price. It also increases the funding cost.

In contrast, when she chooses ψ22|12, W22|12 is not fixed any more. It is an increasing

function of ψ22|12 itself; an increase in ψ22|12 raises the price, P22|12, which, in turn, increases

W22|12. Such an incrase in wealth reduces the amount of leverage, which results in a lower

financing cost. In other words, she can save the financing cost by bulking up her own

wealth (by increasing ψ22|12). She strategically takes into account this additional positive

effect that the increase in ψ22|12 brings on top of the aforementioned three effects. As a

result, cetris paribus, she uses more leverage and the equilibrium price becomes higher. For

comparision, if W22|12 were fixed at 0.0431 (as opposed to varying with ψ22|12), her optimal

leverage ratio would be substantially lower, 0.5935 and the corresponding equilibrium price

would be 0.8188, which is lower than P22|11.

Another interesting thing is the arbitrager’s terminal wealth. The strategic arbitrager’s ex-

pected terminal wealth is 0.0562, which is greater than that of the schizophrenic arbitrager,

0.0554. Of course, this is not a surprising result. In addition, the strategic aribtrager’s

wealth is higher across all states and all paths; the strategic arbitrager does not sacrifice

a certain state to increase the expected return. The most noticeable difference between

the two models is W23|12 and W3|23|12. The starategic arbitrager is more conservative at

t = 0 and s12. The dollar amount of borrowing at t = 0 is 0.0019 (=W0ψ0), which is

much smaller than 0.0140 of the schizophrenic arbitrager. She also borrows only 0.0299

(=W12ψ12) at s12 as opposed to 0.0390 in the schizophrenic arbitrager model. Such con-

servative moves before the crash arms the strategic arbitrager loaded with more bullets

so that she can borrow 0.0721 (=W23|12 ψ23|12), which is far greater than 0.0476 in the

schizophrenic arbitrager model. As a result, her wealth W3|23|12 = 0.0614 is not only much

greater than that of the schizoprehnic arbitrager but also greater than her initial wealth.

2.4 Comparative Statics: q

In this section, we focus on the impact of q on the equilibrium. Note that q, the probability

of negative noise shock, determines the strength of mean reversion. At eatch time t = 1

and t = 2, the probability that the price reverts to its fundamental value, V , is (1− q). As

such, lower q means a stronger mean reversion. If q = 0, the market is noise-free thereby

mispricing-free as well; Thus, we can say that the market is overall more efficient with

lower q.

Figure 3 illustrates how the optimal leverage ratios vary in response to a change in q. Most
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of them are decreasing with q. With the higher q, the weaker mean reversion (and the

higher chance of loss) makes the arbitrager less active in her arbitrage. This is true not

only for the schizophrenic arbitrager but also for the strategic arbitrager. As an exception,

ψ22|11 and ψ23|11 are not sensitive to q. The higher q makes the arbitrager more defensive

in deciding ψ0, but for that reason, P0 is low, which increases its realized return at s11. As

such, W11 is almost the same across q, albeit slightly increasing.7 Since she does not take

any arbitrager position at s11, W22|11 and W23|11 are identical to W11. As a result, W22|11

and W23|11 are almost identical with respect to q so that the optimal leverage ratio (and

the equilibrium price, P22|11 and P23|11 displayed in Figure 4) do not vary with q.8

Figure 4 shows the impact of q on the equilibrium prices. Except P23|12, the equilibrum

prices decrease with q or do not respond to q, which reflects the response of the optimal

leverage ratios to q. In contrast, P23|12 is an increasing function of q. And its sensitivity to

q is the strongest among all the equilibrium prices. For example, P23|12 is 0.5489 and 0.5885

for q = 0.01 and 0.2 respectively. The difference is as large as 7.2%. The arbitrager uses

more aggressive leverage at s12 with lower q with higher expectation of mean reversion,

which results in more loss at s23. As a result, W23|12 is much lower and the arbitrge trans-

action requires a larger amount of leverage, but its funding becomes enormously expensive

so the leverage itself is hindered. This results in the lower price with lower q. Therefore,

we can conclude that a more efficient market q is more vulnerable to a crash (lower P23|12).

Result 2 A seemingly more efficient market is more vulnerable to a crash.

Figure 4 also displays the relationship between q and differences in the equilibrium prices

at state s22 and s23. At s22, the difference between P22|11 and P22|12 decreases with q but

its sensitivity is small; its value is 0.0242 with q = 0.01 and 0.0178 with q = 0.20, so it

decreases by 0.0063. In contrast, the difference between P23|11 and P23|12 also decreases

with q but its sensitivity is much higher; its value is 0.1310 with q = 0.01 and 0.0922 with

q = 0.20, so it falls by 0.0378. Thus we can conclude that price variation (volatility) during

the crash (s23) is larger than that during the tranquil time (s22) as documented in Result

1 and, more importantly, such a tendency is more pronounced in a market with lower q.

Result 3 A seemingly more efficient market shows more extreme tail volatility and a larger

difference between tail volatility and non-tail volatlity.

When we compare the locus of the equilibrium prices between the shizophrenic arbitrager

and the strategic arbitrager, the overall results are robust, albeit slightly weaker. For

7For example, W11 is 0.0537 and 0.0540 for q = 0.01 and q = 0.20 respectively.
8For example, ψ22|11 (ψ23|11) is 0.8771 and 0.8738 (2.3533 and 2.3451) for q = 0.01 and 0.20 respectively.
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example, P23|12 increases by 0.0178 as q increases from 0.01 to 0.20. So the amount of

increase in P23|12 is about 47% of that of the schizophrenic arbitrager model. However,

such a sensitivity is still much larger than the amount of increase in P22|12, which is as

small as 0.0015. So the main results documented in Result 2 and Result 3 are still robust.

3 Empirical Analysis

In this section, we empirically test the major implications of our model using the U.S.

swap data. Our model delivers three major testable implications, which are documented

in Result 1, Result 2 and Result 3. Out of the three implications, we focus on Result 2

and Result 3. Result 1 is not straightforward to test because we need to identify the whole

state space of S similar to the one in Figure 1. The state space of S itself may be equipped

with a larger volatility at its tail. Then the higher tail volatility of the market price could

be driven by that rather than the strong path-dependency of the equilibrium price at the

crash.

We use the fixed-income market as a natural candidate for testing our model. Fixed-income

arbitrage is one of most popular strategies employed by hedge funds. As its name implies,

it is an investment strategy that attempts to exploit mispricing which develops among

related classes of fixed-income securities. Strictly speaking, it is a statistical arbitrage since

mispricing is identified by a statistical analysis rather than by a strict economic reasoning.

A representative strategy is to exploit a substantial deviation of a particular spread (such as

yield spread, basis between cash and futures, credit spread) from its historical average. To

eliminate or minimize its exposure to a fundamental risk, this strategy takes long positions

in one asset and short positions in another asset(s). For that reason, the strategy is called

‘relative value trading strategy.’9

This strategy is generically designed to eliminate its exposure to market risk and credit

risk; as such, the expected return on a dollar investment is relatively small so an unusually

high degreee of leverage is inevitable and often emphasized. In other words, its underlying

9A Long/short equity strategy is another popular strategy utilized by hedge funds. It also simultaneously

takes long and short positions in equity space. However, most of them are long biased (such as 130/30, where

long exposure is 130% and short exposure is 30%) and it is composed of a ‘long’ portfolio by buying equities

that are expected to increase in value and a separate ‘short’ portfolio by shorting equities that are expected

to decrease in value. Sinice it does not eliminate systematic risk completely, it is called a ‘fundamental’

long/short strategy. There is a pairwise long/short equity strategy, which matches a particular stock that

it is long (short) on to another stock with a similar risk profile such as beta. This strategy is not actively

adopted by hedge funds though because remaining idiosyncratic risk after controlling the market risk is

still sizable and its compensation is relatively small.
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driver is not to take systematic risk while taking leverage risk: a giant vacuum cleaner

sweeping up pennies.

There exist a several number of studies which empirically analyze the limited arbitrage.

Mitchell and Pulvino (2001) analyze mergers to characterize the risk and return in risk ar-

bitrage and Mitchell, Pulvino and Stafford (2002) investigate situations where the market

value of a company is less than its subsidiary. Kapadia and Pu (2009) propose limits to

arbitrage as an explanation for a low correlation between equity and credit markets and

test it. Mancini-Griffoli and Ronaldo (2011) investigate how covered interest parity broke

down in the aftermath of the global financial crisis by focusing on the funding liquidity. Re-

cently, Jermann (2017) shows that negtive swap spread, which implies a risk-free arbitrage

opportunity, can be explained by introducing frictions for holding bonds.

Among existing studies on limited arbitrage, the empirical analysis of Duarte, Longstaff and

Yu (2006) is most related to our study. They document that the fixed-income arbitrage

strategies produce significant alphas after controlling for bond and equity market risk

factors and many of them produce positively skewed returns. Thus, they conclude that it

is not sensible to derogate the fixed-income arbitrager for ‘picking up nickels in front of a

steamroller.’ However, they investigate the risk and return chracteristics of representative

arbitrage trading straegies in the fixed-income sector that they construct, not the actual

returns of fixed-income arbitrage funds.10 In addition, their data period ends before the

outbreak of the subprime mortgage crisis. Thus, their conclusion might be premature

because they did not have a chance to see the genuine steamroller.

To see what happened in fixed-income arbitrage funds during the global financial crisis, we

investigate a monthly average returns of fixed-income arbitrage funds from 1997 to April

of 2017, which are provided by the Barclay Fixed Income Arbitrage Index. Figure 5(a)

depcits the time series evoloution of annual returns of the fixed-income arbitrage funds.

Despite the demise of LTCM, the cross-sectional average return in 1998 is still positive,

0.76%. However, the global financial crsisis was a much more catarostrophic havoc to the

industry of fixed-income arbitrage funds. They lost, on average, 0.60% in 2007, for the first

time in their history. In the following year, their return nosedived to -25.20%! Before 2007

that Duarte, Longstaff and Yu’s data covers, the hedge funds’ average monthly return is

as high as 66 basis point. Its standard deviation is as small as 87 basis point. Its skewness

is -2.08, slightly negative, but not statistically significant. Its excess kurtosis is 9.70.11 If

10They investigate swap spread arbitrage, yield curve arbitrage (not slope/butterfly spread strategies

though), mortgage arbitrage and fixed-income volatility arbitrage.
11A number of trading strategies examined in Durate, Longstaff and Yu produce positvely skewed returns.

In contrast, the actual returns of the fixed income arbitrage funds are negatively skewed as shown in Figure

5(b). This is true even when we use only the data before the global financial crisis. A survivorship bias
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adding the post-crisis data till Aprial of 2017, the above-mentioned figures become quite

different. Its mean drops to 49 basis point; its standard deviation jumps up to 141 basis

point; the return becomes more negatively skewed, -4.87, and more leptokurtic with excess

kurtosis of 42.11. Figure 5(b) shows that the distribution of monthly returns is extremely

negatively skewed. That is, the hidden dark side of the fixed income arbitrage emerged

with the outbreak of the global financial crisis!

Existing studies including the aforementioned studies have not investigated a relationship

between a mean-reversion speed (or a strength of convergence) and a tail behavior of

arbtirage payoffs (Result 2 and Result 3). Mitchell, Pulvino and Stafford (2002) show that

returns to an arbitrager would be 50% larger if the path to convergence was smooth rather

than as observed in the data. In our model’s context, the arbitrager’s ex-post return would

be higher (setting aside the higher expected return) if the path is less volatile because the

arbitrager can save the funding cost given the progressive fuding cost structure. However,

that result is not directly related to what we want to empirically analyze, which are Result

2 and Result 3.

We employ the U.S. interest rate swap market as a natural candidate for testing the the-

oretical implications. The interest rate swap market is one of most preferred habitat for

hedge funds and proprietary desks of global investment banks. Trading strategies involving

interest swaps encompass not only generic yield spreads such as slopes and butterflies of

a particular swap curve, but also asset swap margins combined with cash bonds, cross-

country basis swaps and basis on futures and their combinations. Given that there are so

many different strategies available, most of the tradig desks employ a very sophisticated

quantitative algorithm called ‘trade finder’ to detect best opportunities available in a real

time basis. Herein we focus on the most simple and classic trading strategies surrounding

the interest rate swaps, slope spreads and butterflies.

3.1 Trading Strategies Using the Swap Yield Curve

Herein we investigate the most popularly used yield curve strategies among the fixed-

income arbitrage funds: slope and butterfly spreads.

(1) Slope Spreads

The slope strategies center upon a yield difference between a longer-end and a shorter-end

of a yield curve. For example, ‘2s10s’ is a generic industry jargon for a spread between

cannot be an explanation for this discrepancy. Such discrepancy may result from the fact that there are

many other strategies not considered by Durarte, Longstaff and Yu and they produce significantly negatively

skewed returns. A further study is needed to clarify this.
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the ten-year yield and the two-year yield. There exist many different strategies using a

particular slope spread, and the most popular one is the so-called ‘duration matched’ strat-

egy. For a short trading horizon, a profit from a fixed leg in the long end swap can be

approximated by

∆Vl ≈ −DlVl∆yl,

where Dl is the duration of the fixed leg. Thus a trading position with long on the long-end

and short on the shorter-end with a ratio of 1 : λs is

∆(Vl − λsVs) = ∆Vl − λs∆Vs ≈ −DlVl∆yl + λsDsVs∆ys.

That is, the trading position’s short-term payoff is described as a linear function of the

two yields. We want to eliminate the position’s exposure to the parallel shift of the yield

curve, a directional market risk. Thus we determine λs such that

−DlVl + λsDsVs = 0 =⇒ λs =
DlVl
DsVs

=
Dl

Ds
.

The last equality is based on an assumption that both swaps are par-par swaps. A par-par

swap is a generic swap which designates the par notional amount to a fixed leg as well as

a floating leg. As such, Vl = Vs.
12 Putting this value of λs back into the payoff of the

position yields

∆(Vl − λsVs) ≈
[
−Dl∆yl +

Dl

Ds
Ds∆ys

]
Vl = −DlVl ∆(yl − ys).

Thus, the profit of the aforementioned trading stragy is approximately proportional to the

change in the yield spread, yl − ys. If the yield curve shifts parallelly (i.e., yl − ys = 0),

the arbitrage earns zero. If the curve steepens (i.e., yl − ys > 0), the strategy loses and

vice versa. In the industry, yl−ys is called ‘pick-up,’ and the fund managers meticulousely

monitor its change on a real time basis. Typically, they compute the z-value of the spread

based on the past six-month or one-year history and when the z-value is greater or less than

a particular threshold level, they consider entering into a position. For example, if the six-

month z value is greater than 2.0 (less than -2.0), they believe tha the curve is abnormally

steep (flat) so the fund managers take a position in a flattener (steepener): i.e., receive

(pay) the longer-end and pay (receive) the shorter-end. Because the strategy’s market

exposure (duration risk) is eliminated, its expected profit is quite small and therefore the

fund has to use a very high degree of leverage, which could sometimes be as high as ten or

twenty times.

12There is non par-par swap, which is tailored to a specific need of a client; the notional value of each leg

is typically not a par value due to a stub period.
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There are many variations of the above-mentioned trading strategy. Most of them are based

on a belief that the directional move of the curve does not acompany a parallel shift but a

certain change in a shape of the curve. For example, when the market interest rate rises in

the absence of a monetary policy, the slope upto its belly part tends to steepen while the

long-end slope flattens (short-end bear steepening and long-end bear flattening). When

the market interest rate falls, the opposite is more likely to occur: short-end bull flattening

and long-end bull steepening. Thus, to capture such a statistical relationship between the

direction of the yield curve and the correspondig change in the slopes, the quant managers

use regression, Principal Component Analysis (PCA) or Independent Component Analysis

(ICA) to adjust the ratio of the long-end and the short-end. However, the most popular

and representative type of a slope trading strategy is the above-mentioned one.

(2) Butterfly Spreads

A butterfly strategy involves three tenors as opposed to two tenors. For example, ‘5s10s20s’

refers to a spread between the ten-year yield (middle leg) and the average of the five-year

yield (short leg) and the twenty-year yield (log leg). Thus it measures the curvature of the

swap yield curve. If the curve is expected to be more more concave, the trader ‘pays’ the

butterfly (short on the middle leg and long on the combination of the short and the log

legs) and vice versa. Thus the butterfly is associated with the third factor of the PCA,

e.g., the curvature factor whereas the slope is related with the second factor.13

Below, we investigte the most widely used strategy, a double duration mathched butterfly.

The value change of the butterfly can be again approximated as

−DmVm∆ym + λsDsVs∆ys + λlDlV∆yl.

We determine λs and λl such that (i) the duration of the butterfly is zero and (ii) the

duration of the short leg is identical to the duration of the long leg:

−DmVm + λsDsVs + λlDlVl = 0

λsDsVs − λlDlVl = 0,

which yields

λs =
DmVm
2DsVs

=
Dm

2Ds
and λl =

DmVm
2DlVl

=
Dm

2Dl
.

Again we assume that the swaps are the par-par swaps in the last equalities in the above

two equations. Then the payoff can be described as

−DmVm∆ym + λsDsVs∆ys + λlDlV∆yl = −DmVm∆

[
ym −

1

2
(ys + yl)

]
.

13A simple ‘pay’ or ‘receive’ of a particular tenor, which is equivalent to shorting or longing a cash bond

is a directional bet on the yield and thus is related to the first factor of PCA.
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Thus the payoff of the butterfly is proportional to the difference between the yield of the

middle leg and the average yield of the short leg and the long leg. If the trader ‘receives’

the (middle leg of the) butterfly, she gains if the curve becomes less curvatured and loses if

the opposite happens. Similar to the slope spreads, there are many other variations which

utilize the statistical association among the three legs such as a regression analysis, a PCA

and an ICA.

One thing to mention is the funding cost associated with spread strategies. A swap contract

does not accompany any exchange of notional values because the notional value of a fixed

leg is identical to that of a floating leg. And its funding cost is already embedded within

its contract; if you receive the fixed leg, its funding rate is the six-month LIBOR rate, a

coupon rate of the floating leg. If you receive the floating leg, its funding rate is the swap

rate. As such, even if the size of swap position (notional value) increases, the funding

rate itself does not increase. The same argument can be made about a spread position, a

combination of swaps with different tenors. However this logic does not reflect the market

practice of marking-to-market (MTM) and collateralization. Under the MTM practice,

counterparties are required to post collateral in the amount of the mark-to-market value of

the contract.14 When the mark-to-market value of one party in a swap contract is negative,

she needs to pay collateral to her counterparty in the amount of loss. In that sense, it is

similar to a futures contract as opposed to a forward contract.15 Collateral is costly to

post, so it induces economic costs to the collateral payer. If she continues to lose in the

mark-to-market value of her position, she needs to post additional collateral and this cost

rises concommitantly. If she fails to post it, she becomes bankrupt. Most of the collateral

posted is in the form of cash or Treasury securities. To pay the collateral, she may use her

own cash or Treasuries; otherwise she needs to finance it. Since she loses more, she needs

to finance it more and hence the financing cost may rise as well.16 Therefore, a priori, a

swap position or its combinations (including spreads) entails an implicit funding cost; this

cost tends to increases with the size of potential loss in the position. In turn, the size of

potential loss is proportional to the size of position and also the riskiness of the position.

Overall, this feature is in line with Assumption 1 in our model that the funding rate is

proportional to the leverage ratio.

14See Johannes and Sundaresan (2007) for this market convention and its impact on the swap rates.
15See Johannes and Sundaren (2007) for details.
16Or her counterparty, typicall a dealer, applies higher haircuts to Treasuries collateralized.
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3.2 Data

We use the U.S. swap yield data from July 23, 1998 to May 11, 2017 from the Bloomberg.

We eliminate weekends and holidays. The number of daily observations is 4904. The

corresponding number of weekly observations (Wendesday) is 980.17 The tenors are from

one year to ten year along with fifteen year, twenty year and thirty year and thus the

total number of tenors is thirteen. Consequently the number of slope spreads and butterfly

spreads we can construct is 78 (=
∑12

i=1 i) and 286 (=
∑12

i=2(i− 1)(13− i)) respectively.

3.3 Tests

Among many implications delivered by our model, we focus on testing two major hypothe-

ses.

(H1): The spreads with stronger mean reversion are subject to higher tail risk.

(H2): The spreads with stronger mean reversion are subject to higher tail volatility risk.

Going back to the model, (H1) corresponds to Result 2, which is grounded on the fact

that P23|12 increases with q. (H2) is built upon Result 3, which reflects the fact that a

discrepancy between P23|11 and P23|12 decreases with q.

Both hypotheses require the operational definition of ‘tail’ states (corresponding to s23 in

our model). We consider 0.5 percentile, 1 percentile and 2 percentile as threshold levels.

Even though we theoretically investigate only when the asset is undervalued due to negative

noise shocks, a symmetric result holds when the asset is overvalued due to positive noise

shocks, as long as the funding cost of shorting increases with the size of short position.

Thus we investigate both tails of a spread distribution.

To test the hypotheses, we first normalize the spreads to their corresponding z values. By

doing so, we can equalize the risk amount of trade across spreads and thus the scale of

potential collateral. Therefore we can directly compare their tail risk and tail volatility

risk cross-sectionally.18 The test procedure is composed of two steps. In the first step,

we estimate the mean-reversion speed of each spread from its time-series data. We also

17We use other weedays to check the robustness of our results. Qualitatively speaking, the results are

the same.
18For example, the payoff of a slope spread is approximately −DlVl∆(yl− ys). After normalizing yl− ys,

the only remaining difference across different slopes is Dl. As long as the duration does not change much

over time, Dl is close to constant over time. In such a case, normalizing Dl(yl − ys) is quanlitatively
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estimate the statistics associated with tail risk and tail volatility risk. In the second step,

we run a cross-sectional regression on those statistics against the mean-reversion speed.

(1) First step: time series estimation

We estimate each spread’s mean-reversion speed, δi by

∆zi,t+1 = µi + δizi,t + εi,t+1,

where zi,t is a normalized spread i at time t. The mean-reversion speed is −δi.

In testing (H1), we adopt the following three alternative measures for tail risk:

(i) kurtosis
(

=
Ê(zi,t)

4

σ̂(spi)2

)
.

(ii) p-percentile Value at Risk (VaR): zi|p for the left tail, zi|1−p for the right tail.

(iii) Short Fall Risk: Ê(zi,t|zi,t < zi|p) for the left tail, Ê(zi,t|zi,t > zi|1−p) for the right

tail

VaR and Short Fall Risk are estimated by historical simulation. Each measure has its own

strength and weakness and we do not want to discuss them in detail. Simply we apply all

these measures together.

The measure of tail volatility needed in testing (H2) is a standard deviation conditional

upon the occurrence of a spread beyond the threshold value mentioned above:

σi|p− = σ
(
zi,t|zi,t < zi,t|p

)
σi|p+ = σ

(
zi,t|zi,t > zi,t|(1−p)

)
,

where p = 0.005, 0.01 or 0.02.

(2) Second Stage: Cross-sectional Regression

In the second stage, we run the following regressions:

yi = β0 + β1δi + ei.

where yi is the kurtosis, VaR, short fall risk and tail volatility of spread i. For comparison,

we also run a regression on non-tail volatility of spreads.

equivalent to normalizing (yl − ys) since

Dl(ylt − yst)− µ(Dl(ylt − yst)
Dlσ(ylt − yst)

=
ylt − yst − µ(ylt − yst)

σ(ylt − yst)
.

Simply put, taking Vl
σ(ylt−yst)

as a notional value of the position assigns the same risk profile to different

spreads.
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However, this two-step estimation procedure suffers from a classic errors-in variables (EIV)

problem. We use the estimate of mean-reversion speed as an independent variable and the

estimates of distributional characteristics (kurtosis, Value-at-Risk, expected short-fall risk

and etc.) as dependent variables. Therefore, both regressors and regressands are subject to

estimation errors. As is well known, though, the measurement errors in regressands do not

cause a problem as long as they are uncorrelated with the regressors and their measurement

errors.

Thus we focus on the errors-in-variable of the regressors. The EIV leads to a bias in the

estimated coefficients, toward zero, which is called ‘attenuation bias.’ In our empirical

work, we find that the corrections for this bias are, in general, relatively small. Specific

methods to adjust the EIV problem are presented in Appendix C.

3.4 Estimation Results

Table 1A Table 1C report the estimation results for slopes, butterflies and all of them

respectively. In Table 1A, kurtosis is positively associated with mean-reversion speed with

statistical significance and R2 is as high as 59.9%. Next, the mean-reversion speeds demon-

strate a negtive relationship with negative VaRs and a positive relationship with positive

VaRs. That is, the slopes with stronger mean reversion is more likely to have a fat left

tail risk as well as a right tail risk. We find the similar findings, albeit stronger when

employing shortfall risk as an alternative measure of tail risk. In addition, such a result is

more pronounced when the threshold percentile, p, is smaller, which means that the more

serious tail risk, it is more strongly associated with the mean-reversion speed. All these

results hold when we use weekly data as well. Overall we can conclude that hypothesis

(H1) is strongly supported.

In addition, both tail volatilities, left tail and right tail, are also strongly positvely as-

sociated with mean-reversion speed. In contrast, non-tail volatilities are not significantly

associated with mean reversion speed. The results are robust to when we use different

threshold levels and weekly data. So we can conclude that hypothesis (H2) is also well

supported.

Table 1B reports the estimation results for the butterfly spreads. Qualitatively speaking,

the overall results are similar to Table 1A. The VaR results are less strong but the results

with shortfall risk confirm that the tail risk is higher with stornger mean-reverting but-

terflies.19 Another thing to notice is that non-tail volatilities are negatively associated,

19The estimation of VaR is, in general, less efficient since it estimates one particular point. In contrast,

the shortfall risk estimates the ‘mean’ of sample observations below (above) that negative (positive) VaR
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rather than positively associated, with mean-reversion speed. That is, the butterflies with

stronger mean-reversion speed tend to have lower volatilities during tranquil time. Table

1C reports the results when the slopes and the butterflies are all adopted as dependent

variables. The overall results are again similar to Table 1A and 1B. Both hypotheses are

well supported.

Table 2A, 2B and 2C are based on EIV-adjustments. As expected, the findings in Table

1A, 1B and 1C become stronger by alleviating the attenuation biases arising from EIVs.

Finally, we reexamine the relationship by using the mean-reversion speed during tranquil

time only. We are concerned about the possibility that the estimates of mean-reversion

speed are contaminated. Specifically, the mean-reversion might be accelerated during a

crash and such a tendency may be more pronounced with spreads which suffer more during

a period of market stress. Thus we re-estimate the mean-reversion speed of each spread

by excluding the tail part. The estmation results are reported in Table 3A, 3B and 3C.

The overall results are still robust to these alternative measures of mean-reversion speeeds.

The only noticeable difference is that, in Table 3A, the positive non-tail volatilties of slopes

are positively associated with the mean-reversion speeds with statistically significance.

However, the regression coefficients are still well below those of positive tail volatilities.

Thus (H2) is still supported.

In summary, we can conclude that the two hypotheses, (H1) and (H2), are well in line with

the behavior of the U.S. swap curve. A seemingly more efficient market is more likely to

be dismantled and also is subject to higher volatility once the crash occurs.

4 Conclusion

This paper delivers a novel insight on limited arbitrage on top of exisiting literature by

centering upon what kind of market is more likely to attract arbitrage transactions and

demonstrating theoretically and empirically that such a market is more susceptible to a

crash.

Hedge funds specializing in fixed income arbitrage are extremely similar in their key strate-

gies. They seize a trade opportunity when the gap between the market price of a security

and its fair value widens above a pre-specified level. They unwind their positions either

when the spread contracts to a certain level (profit realization). Therefore, their entry

into and exit from trades are very similar albeit their exact profit realization levels and

loss cut levels being slightly different. Simply put, their investment strategies are uni-

level.
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directional and from the lack of diversity. As a result, regardless of the number of hedge

funds participating in the JF market, they act as a huddled mass.20

Under a tranquil market condition, such synchronized collective actions among hedge funds

have the benefits of polishing the market more effectively by eliminating mispricings quickly

and sufficiently. However, when the market is embroiled in turmoil, i.e., when it is time

that the arbitrager’s demand is most needed, the arbitrage mechanism itself malfunctions

and fails to correct dislocations in prices. In our model, an arbitrager is ensured to survive

until the market price converges to its fair value. In addition, we do not introduce a

loss-cut practice that is widely employed by hedge funds.21 As such, in our model, the

arbitrager exits the market only if she earns gains and does not expect any further profit

opportunity. If we allow other reasons including the aforementioned ones the arbitrager

leaves the market (so when the gap widens rather than shrinks), the model may amplify

the mispricing; for example, P23|12 could be even lower than V −2S. In the worst case, the

market collapses and fails to be resurrected as evidenced by Japanese floating rate bond

market.22 We reserve this kind of extension for future research.

20Thus our assumption of a single arbitrager is not entirely preposterious.
21See Ahn, Kim and Seo (2017) for a potential equilibrium of disequilibrium in the presence of such a

practice.
22See Ahn, Baek, Chung and Kang (2016) for how the Japanese floater market collapsed in the aftermath

of the global financial crisis.
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Appendix A: Proofs of Propositions

Proof of Proposition 1:

(i) When E(Pt+1|st)
Pst

> 1: the first order condition yields

ψ∗st =

E(Pt+1|st)
Pst

− 1

2φ
> 0.

(ii) When E(Pt+1|st)
Pst

= 1: a condition for E[Wt+1|Wst ] > Wst becomes

−φψ2
st1ψst>0 > 0.

Therefore, ψst ≤ 0, thereby making 1ψst>0 = 0, is optimal; the arbitrager does not employ

any leverage. She is indifferent between riskless saving and arbitrage transaction with her

own wealth or their combinations.

(iii) When E(Pt+1|st)
Pst

< 1:

(a) If the arbitrager chooses positive ψst , a condition for E[Wt+1|Wst ] > Wst is

ψst

[
E(Pt+1|st)

Pst
− 1

]
+
E(Pt+1|st)

Pst
− 1− φψ2

st > 0.

It is a quadratic function which achieves its maximum at ψst =

E(Pt+1|st)
Pst

−1
2φ < 0. As

such, for a positive domain of ψst , the function is downward sloping with an intercept

of E(Pt+1|st)
Pst

− 1. Consequently, the supremum over ψst ≥ 0 is the intercept itself,
E(Pt+1|st)

Pst
− 1, which is negative.

(b) If the arbitrager chooses negative ψst , the condition becomes

ψst

[
E(Pt+1|st)

Pst
− 1

]
+
E(Pt+1|st)

Pst
− 1 > 0.

The expression in the left hand side is a downward linear function of ψst with an

intercept, E(Pt+1|st)
Pst

− 1.

Combining (a) and (b) indicates that the overall shape of E[Wt+1|Wst ] when E(Pt+1|st)
Pst

< 1 is

a combination of the downward linear function and the downward quadratic function, which

meet each other at ψst = 0. Consequently, the supremum occurs ψst = −1, the lowest value

of leverage ratio.

Lemma 1 The wealth of the arbitrager at state s12 under ψ12 = 0 is always smaller than

the initial wealth; i.e., (W12|ψ12 = 0) < W0.
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Proof: Suppose that ψ0 = 0. Then, P0 = V − 1
2S +W0.

(W12|ψ0 = 0, ψ12 = 0) = W0
(P12|ψ12 = 0)

(P0|ψ0 = 0)

= W0
V − S + (W12|ψ0 = 0, ψ12 = 0)

V − 1
2S +W0

.

Solving for (W12|ψ0 = 0, ψ12 = 0) yields

(W12|ψ0 = 0, ψ12 = 0) = W0
V − S
V − 1

2S
< W0. (17)

Therefore, when the arbitrager does not take any leverage at time 0, W12 < W0. Now we show

that if the arbitrager increases her leverage from 0, W12 decreases. For brevity, we suppress the

conditional argument on (W12|ψ12 = 0) and (P12|ψ12 = 0) from here on. Note that

W12 = W0

[
(1 + ψ0)

P12

P0
− ψ0(1 + φψ0)

]
= W0

[
(1 + ψ0)

V − S +W12

V − 1
2S +W0(1 + ψ0)

− ψ0(1 + φψ0)

]
.

The solution to W12 is

W12 =
W0

V − 1
2S

[
(1 + ψ0)(V − S)−

(
V − 1

2
S +W0(1 + ψ0)

)
ψ0(1 + φψ0)

]
Then its derivative with respect to ψ0 is

∂W12

∂ψ0
=

W0

V − 1
2S

[
−3φW0ψ

2
0 − 2

[
W0 + φ

(
V − 1

2
S +W0

)]
ψ0 −

(
1

2
S +W0

)]
.

The expression inside the square bracket is a quadratic equation and its roots are

ψ∗0 =
b±

√
b2 − 12φW0

(
1
2S +W0

)
6φ

,

where b = −2
[
W0 + φ

(
V − 1

2S +W0

)]
< 0. Therefore, both roots are all negative, and thus

∂W12

∂ψ0
< 0 ∀ ψ0 ≥ 0.

Combining the two facts, (W12|ψ0 = 0) < W0 and ∂W12

∂ψ0
< 0 ∀ ψ0 > 0 means W12 < W0 for all

ψ0 > 0. �

Proof of Proposition 2:

We first prove that the arbitrager always takes positive leverage at time 0 if the proposed condition

is met. Then we show that the arbitrager always takes leverage afterwards.
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(i) t = 0 : Suppose that the arbitrager does not take leverage and simply invests her own initial

wealth, W0 at t = 0. To justify any epsilion amount of leverage, the expected return on

the security should be positive or equivalently the price should be undervalued despite the

investment of the arbitrager:

(P0|ψ0 = 0) = V − 1

2
S +W0 < E(P1) = (1− q)V + qP12.

Note that P12 = V − S + W12(1 + ψ12) where ψ12 ≥ −1 as shown below. E(P1) is endoge-

nously determined in equilibrium because so is P12. However we can still identify a sufficient

condition for an admissibility of leverage strategy, ψ0 > 0. Given the feasible range of ψ0, a

sufficient condition is

(P0||ψ0 = 0) = V − 1

2
S +W0 < inf

ψ12

E(P1) = ((1− q)V + q(V − S)) ,

which leads to S > 2W0

1−2q . Thus when S > 2W0

1−2q , the arbitrager alwyas use positive leverage

at t = 0.

(ii) t = 1 : At t = 1, we need to focus on s12 only since at s11, there is no noise shock and

thus the arbitrager will be dormant in this market. At s12, the arbitrager would leverage her

investment if

P12 = V − S +W12(1 + ψ12) < E(P2|s12) = (1− q)V +
q

2
(P22|s12) +

q

2
(P23|s12). (18)

Again, to validate her positive leverage, we need a sufficient condition that the conditional

expected return is still positive when ψ12 = 0 and that is true even at the lowest feasible

prices, P22|s12 and P23|s12. Given the fact that

P22|s12 = V − S + (W22|s12)(1 + ψ22), P23|s12 = V − 2S + (W23|s12)(1 + ψ23),

and thus (18) can be rewritten as:

V − S +W12 < inf
ψ22,ψ23

E(P2|s12) = (1− q)V +
q

2
(V − S) +

q

2
(V − 2S)

= V − 3

2
qS.

This condition is reduced to

S >
2

2− 3q
W12,

and this is a sufficient condition for ψ12 > 0. It is straightforward to show that

2

1− 2q
>

2

2− 3q
∀ 0 < q <

1

2
.

Following Lemma 1, W0 > W12; Therefore,

S >
2

1− 2q
W0 >

2

1− 2q
W12 >

2

2− 3q
W12.

At t = 2, the arbitrage always use leverage since the asset recovers its fair value at t = 3. This

completes the proof. �
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Proof of Propositin 3:

To find a condition for W23|12 > 0, we need to find ψ∗12 such that

ψ∗12 = argmax E(W2|12) = W12

[
(1 + ψ12)

(1− q)V + q
2P22|12 + q

2P23|12

P12
− ψ12(1 + φψ12)

]

=

(1−q)V+ q
2P22|12+

q
2P23|12

P12
− 1

2φ

Plugging back ψ∗12 into W23|12 yields the desired condition. However, P22|12, P23|12 and P12 are

determined in the equilibrium, and unfortunately they are all numerically solved. Below, we ap-

proximate the condition by replacing the market prices by the value in the absence of arbitrage

demand. We first solve for a pseudo optimal leverage ratio at s12 such that

ψ∗12 ≈ ψ
p
12 = argmax E(W p

2|12) = W12

[
(1 + ψ12)

(1− q)V + q
2 (V − S) + q

2 (V − 2S)

P12
− ψ12(1 + φψ12)

]

=

(1−q)V+ q
2 (V−S)+

q
2 (V−2S)

V−S − 1

2φ

=
S
(
1− 3

2q
)

2φ(V − S)

We also approximate W23|12 as following:

W p
23|12 = W12

[
(1 + ψ12)

V − 2S

V − S
− ψ12(1 + φψ12)

]
= W12

[
−φψ2

12 −
S

V − S
ψ12 +

V − 2S

V − S

]
.

Note that the expression inside the square bracket is a quadratic function with an inverted U shape.

It has two roots: one is negative and the other is positive. We consider only the positive leverage

ratio so that the valid root is a positive one. Then, the feasible set of ψ12 which yields W p
23|12 > 0

is

ψ12 ∈

0,

S
V−S −

√(
S

V−S

)2
+ 4φV−2SV−S

−2φ

 .

Therefore, for W23|12 to be positive, the above approximate solution, ψp12 should be inside this

feasible set or equivalently,

ψp12 =
S
(
1− 3

2q
)

2φ(V − S)
<

S
V−S −

√(
S

V−S

)2
+ 4φV−2SV−S

−2φ
(19)

Simplifying the above inequality condition yields

S2

[(
2− 3

2
q

)2

− 1− 8φ

]
+ 12φSV − 4φV 2 ≤ 0. (20)
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The two roots are

S =

−12φV ±
√

(12φV )2 + 16φV 2
{(

2− 3
2q
)2 − 1− 8φ

}
2
{(

2− 3
2q
)2 − 1− 8φ

} (21)

The feasible range of Sp depends on the sign of the numerator of (20).

(i) When
(
2− 3

2q
)2 − 1− 8φ > 0.

In this case, (20) implies

−12φV −
√

(12φV )2 + 16φV 2
{(

2− 3
2
q
)2 − 1− 8φ

}
2
{(

2− 3
2
q
)2 − 1− 8φ

} < S <

−12φV +

√
(12φV )2 + 16φV 2

{(
2− 3

2
q
)2 − 1− 8φ

}
2
{(

2− 3
2
q
)2 − 1− 8φ

} .

The value of the left hand side is negative whereas the value of the right hand side is positive.

Since we consider only the negative noise shock, S > 0. Therefore the approximate upper

limit of S is

Sp =

−12φV +

√
(12φV )2 + 16φV 2

{(
2− 3

2q
)2 − 1− 8φ

}
2
{(

2− 3
2q
)2 − 1− 8φ

} .

(ii) When
(
2− 3

2q
)2 − 1− 8φ = 0.

From (20), we can get S < V
3 so that

Sp =
V

3
.

(iii) When
(
2− 3

2q
)2 − 1− 8φ < 0.

In this case,

S <

−12φV +

√
(12φV )2 + 16φV 2

{(
2− 3

2q
)2 − 1− 8φ

}
2
{(

2− 3
2q
)2 − 1− 8φ

} (22)

or S >

−12φV −
√

(12φV )2 + 16φV 2
{(

2− 3
2q
)2 − 1− 8φ

}
2
{(

2− 3
2q
)2 − 1− 8φ

} (23)

Below we show that the second inequality is not valid. To see this, we first show that

lim
φ↑∞

−12φV +

√
(12φV )2 + 16φV 2

{(
2− 3

2q
)2 − 1− 8φ

}
2
{(

2− 3
2q
)2 − 1− 8φ

} =
−12V + 4V

−16

=
V

2

and

lim
φ↑∞

−12φV −
√

(12φV )2 + 16φV 2
{(

2− 3
2q
)2 − 1− 8φ

}
2
{(

2− 3
2q
)2 − 1− 8φ

} =
−12V − 4V

−16

= V.
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Therefore, the maximum value of the left hand side in (20) is obtained at S = 3
4V . Second,

we show that it is also a decreasing function of φ. That is,

∂ −12φV
2
{
(2− 3

2 q)
2−1−8φ

}
∂φ

=
−24V

{(
2− 3

2q
)2 − 1− 8φ

}
− 12 · 16φV

4
{(

2− 3
2q
)2 − 1− 8φ

}2

=
−24V

{(
2− 3

2q
)2 − 1

}
4
{(

2− 3
2q
)2 − 1− 8φ

}2 ,

which is strictly positive since q < 2
3 . So far we have shown two facts. First, when φ = ∞,

the maximum value of the left hand side in (20) occurs at S = 3
4V . In addition, the value

of S which achieves the maximum value increases as φ decreases. Combining the two, we
can conclude that the value of S obtaining the maximum value is alway greater than 3

4V .
Consequently,

−12φV −
√

(12φV )2 + 16φV 2
{(

2− 3
2
q
)2 − 1− 8φ

}
2
{(

2− 3
2
q
)2 − 1− 8φ

} >
−12φV

2
{(

2− 3
2
q
)2 − 1− 8φ

} >
3

4
V.

However, S < 1
2V ; otherwise, the price before the arbitrage transaction at s23 is V −2S < 0.

Therefore, (23) is not valid and we take only the first inequality, (22). As a result, the valid

upper bound of S is

Sp =

−12φV +

√
(12φV )2 + 16φV 2

{(
2− 3

2q
)2 − 1− 8φ

}
2
{(

2− 3
2q
)2 − 1− 8φ

} .

In conclusion, (i) and (ii) all indicate that the approximate upper bound on S is

S ' Sp =


−12φV+

√
(12φV )2+16φV 2

{
(2− 3

2 q)
2−1−8φ

}
2
{
(2− 3

2 q)
2−1−8φ

} if
(
2− 3

2q
)2 − 1− 8φ ≶ 0.

V
3 if

(
2− 3

2q
)2 − 1− 8φ = 0

Proof of Propositon 4:

Plugging the interior solution to ψ∗ti in Proposition 1 into the following market clearing condition

Pti = V − Sti +Wti (1 + ψ∗ti) ,

and solving for Pti yields the desired result. �

Proof of Proposition 5

Let us rearrange the terms in the square bracket in (15) and evaluate them at the schizophrenic

arbitrager’s optimal leverage ratio, ψschizo
ti .

E(Pt+1|sti)
Pti

− (1 + 2φψschizo
ti )︸ ︷︷ ︸

=0

+
∂ {E(Pt+1|sti)/Pti}

∂ψti
(1 + ψti)

∣∣∣
ψti=ψschizo

ti
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Thus, whether the strategic arbitrager assumes more, less, or idential leverage than the schizophrenic

arbitrager does depends on the sign of ∂{E(Pt+1|sti)/Pti}
∂ψti

(1 + ψti)|
ψti=ψschizo

ti

.

∂ {E(Pt+1|sti)/Pti}
∂ψti

∣∣∣
ψti=ψschizo

ti

=
−E(Pt+1|sti) ∂Pti

∂ψti

P 2
ti

∣∣∣
ψti=ψschizo

ti

, (24)

where

∂Pti
∂ψti

=
∂[V − Sti +Wti(1 + ψti)]

∂ψti

∣∣∣
ψti=ψschizo

ti

= Wti > 0.

Therefore ∂{E(Pt+1|sti)/Pti}
∂ψti

∣∣∣
ψti=ψschizo

ti

< 0, which means

∂E[Wt+1|sti]
∂ψti

|
ψti=ψschizo

ti

< 0.

This complete the proof. �
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Appendix B: Optimization Problem of the Strategic

Arbitrager

Herein we describe the expected terminal wealth of the arbitrager, E(W3) in 16. At s11, P11 = V

and ψ11 = 0. Therefore,

W3|21|11 = W0

[
(1 + ψ0)

V

P0
− ψ0(1 + φψ0)

]
︸ ︷︷ ︸

=W21|11=W11

W3|22|11 = W0

[
(1 + ψ0)

V

P0
− ψ0(1 + φψ0)

]
︸ ︷︷ ︸

=W22|11=W11

[
(1 + ψ22|11)

V

P22|11
− ψ22|111(1 + φψ22|11)

]

W3|23|11 = W0

[
(1 + ψ0)

V

P0
− ψ0(1 + φψ0)

]
︸ ︷︷ ︸

=W23|11=W11

[
(1 + ψ23|11)

V

P23|11
− ψ23|111(1 + φψ23|11)

]
,

where the relevant prices are from the market clearing conditions,

P22|11 = V − S +W0

[
(1 + ψ0)

V

P0
− ψ0(1 + φψ0)

]
︸ ︷︷ ︸

=W22|11=W11

(1 + ψ22|11)

P23|11 = V − 2S +W0

[
(1 + ψ0)

V

P0
− ψ0(1 + φψ0)

]
︸ ︷︷ ︸

=W23|11=W11

(1 + ψ23|11)

P0 = V − 1

2
S +W0(1 + ψ0)

Similarly we can define the terminal wealths stemming from s12:

W3|21|12 = W0

[
(1 + ψ0)

P12

P0
− ψ0(1 + φψ0)

]
︸ ︷︷ ︸

W21|12=W12

[
(1 + ψ12)

V

P12
− ψ12(1 + φψ12)

]

W3|22|12 = W0

[
(1 + ψ0)

P12

P0
− ψ0(1 + φψ0)

] [
(1 + ψ12)

P22|12

P12
− ψ12(1 + φψ12)

]
︸ ︷︷ ︸

W22|12[
(1 + ψ22|12)

V

P22|12
− ψ22|12(1 + φψ22|12)

]
W3|23|12 = W0

[
(1 + ψ0)

P12

P0
− ψ0(1 + φψ0)

] [
(1 + ψ12)

P23|12

P12
− ψ12(1 + φψ12)

]
︸ ︷︷ ︸

W23|12[
(1 + ψ23|12)

V

P23|12
− ψ23|12(1 + φψ23|12)

]
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where

P22|12 = V − S +W22|12(1 + ψ22|12)

= V − S +W0

[
(1 + ψ0)

P12

P0
− ψ0(1 + φψ0)

] [
(1 + ψ12)

P22|12

P12
− ψ12(1 + φψ12)

]
(1 + ψ22|12)

Solving for P22|12 yields

P22|12 =
V − S −W0

[
(1 + ψ0)P12

P0
− ψ0(1 + φψ0)

]
ψ12(1 + φψ12)(1 + ψ22|12)

1−
W0

[
(1+ψ0)

P12
P0
−ψ0(1+φψ0)

]
(1+ψ12)(1+ψ22|12)

P12

Similarly,

P23|12 =
V − 2S −W0

[
(1 + ψ0)P12

P0
− ψ0(1 + φψ0)

]
ψ12(1 + φψ12)(1 + ψ23|12)

1−
W0

[
(1+ψ0)

P12
P0
−ψ0(1+φψ0)

]
(1+ψ12)(1+ψ23|12)

P12

and

P12 =
V − S −W0ψ0(1 + φψ0)(1 + ψ12)

1− W0(1+ψ0)(1+ψ12)
P0

We use the Berndt-Hall-Hall-Hausman algorithm for numerical optimization using a 100 different

random combinations of initial values for {ψ}.
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Appendix C: Errors in Variable Problem

We focus on the errors-in-variable of the regressors. EIV leads to a bias in the estimated coefficients,

toward zero, which is called ’attenuation bias.’ our empirical work, we find that the corrections for

this bias are, in general, relatively small; however, they are substantial for the case of non-tail slope

spreads. To deal with the EIV problem, we take the following procedures.

(a) Following Theorem 5 of Shanken (1992), we make corrections to the regression coefficients:

β̂i =

[
X̂
′
X̂−

(
0 0

0
∑N
i=1 σ

2(δ̂i)

)]−1
X̂
′
y, (25)

where X = [1N , x] and 1N is a N -dimensional vector of ones. Note that x = {δi}, a vector

of mean-reversion speeds.

(b) This analytical correction in (a) entails subtracting the sum of squred standard errors of mean-

reversion speed from φ̂′φ̂ to better approximate δ′δ. However, as shown by Chordia, Goyal

and Shanken (2015), this correction may overshoot and the argument inside the squre bracket

in (25) may not be positive definite. In case that the matrix in the square bracket fails to be

positive definite, we use the instrumental variable approach using higher moments proposed

by Dagenais and Dagenais (1997). They introduce an unbiased EIV-corrected estimator,

which is a weighted average of the second moment estimator proposed by Durbin (1954) and

the third moment estimator proposed by Pal (1970). They show that this new EVI-corrected

estimator is more efficient than either of both. Let us denote the Durbin’s estimator and the

Pal’s estimator by β̂d and β̂h respectively. Then,

β̂1d = (z1x)−1z′1y

β̂1h = (z2x)−1z′2y,

where

x = Ax

y = Ay

A = IN −
`′N`N
N

z1 = x2

z2 = x3 − 3
x′x

N
x,

and x2 and x3 correspect to the vectors with squares and cubics of each elements of x. `N

is a N -dimensional vector of ones. x and y are demeaned vectors of x and y respectively.

Note that both of β1d and β1h are EIV- corrected estimators based on employing the second

and the third moments as instrumental variabls respectively. Applying the Generalized Least

Square (GLS) method, the resulting EIV-corrected estimator is

β̂1c = (`′2Σ−1`2)−1`′2Σ−1

(
β1d

β1h

)
,
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where Σ is the covariance matrix of β1d and β1h under the null of no measurement errors

such that

Σ = σ2
ε

[
(z′1x)−1z′1Az1(x′z1)−1 (z′1x)−1z′1Az2(x′z2)−1

(z′1x)−1z′1Az2(x′z2)−1 (z′2x)−1z′2Az2(x′z2)−1

]
.

β̂1c is unbiased because β1d and β1p are unbiased. The corresponding variance of the estimator

is

var(β̂1c) = (`′2Σ−1`2)−1.

Dagenais and Dagenais (1997) show that it is smaller or equal to the smller variance of β̂1d

and β1p.

The IV mehtod of (b) is designed to correct the bias induced by measurement errors, not specifically

tailored to estimation errors. As such, it does not make use of the information on estimation errors

of x̂, e.g. its standard errors. In that sense, it is less efficient method of correction. In addition,

As is true for any kind of IV approach, the instrumental variables, z1 and z2 are required to be

uncorrelated with error terms but partially and sufficiently strongly correlated with the unobservable

x. The first requirement is difficult to be confirmed because we cannot observe the error terms.

That is the reason we adopt the above pecking order approach. If (a) is feasible, we employ it and

otherwise we adopt (b).
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Figure 1: State Space of a pessimistic shock of noise traders S.

This figure illustrates the state space of S, a time-series evolution of states on S, which is

an amount of deviation from the fundamental value, V , due to a pessimistic misconception

of noise traders. The thick line corresponds to the state space of S used in the model of

Shleifer and Vishny (1997), which is a special case of our model.
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t = 0 t = 1 t = 2 t = 3

ψ0 = 0.2799

P0 = 0.9390

W0 = 0.0500

ψ11 = −1

P11 = 1

W11 = 0.0538
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P12 = 0.8313

W12 = 0.0423

ψ21|11 = ψ21|12 = −1
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W23|12 = 0.0121
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W3|22|12 = 0.0505

W3|23|11 = 0.1088

W3|23|12 = 0.0404

Figure 2(a): Optimal Leverage Ratios, Equilibrium Prices, Arbitrager’s

Wealth: Schizophrenic Case

This figure illustrates the optimal leverage ratio, ψ, the equilibrium price, P , and the

corresponding wealth of the arbitrager, W , across states and time in the schizophrenic

arbitrager model. Structural paramers used are V = 1, W0 = 0.05, S = 0.25, φ = 0.1 and

q = 0.05.
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t = 0 t = 1 t = 2 t = 3
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W3|22|12 = 0.0560

W3|23|11 = 0.1198

W3|23|12 = 0.0614

Figure 2(b): Optimal Leverage Ratios, Equilibrium Prices, Arbitrager’s

Wealth: Strategic Case

This figure illustrates the optimal leverage ratio, ψ, the equilibrium price, P , and the cor-

responding wealth of the arbitrager, W , across states and time in the strategic arbitrager

model. Structural paramers used are V = 1, W0 = 0.05, S = 0.25, φ = 0.1 and q = 0.05.
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(a) ψ0 (b) ψ12

(c) ψ22|11 and ψ23|11 (d) ψ22|12 and ψ23|12

Figure 3: Optimal Leverage Ratios: ψ.

This figure illustrates the optimal leverage ratios, ψs (from t = 0 to t = 2) as a function of

the probability of pessimistic negative shock, q. ψ11 = ψ21|11 = ψ21|12 = −1 so that they

were not drawn.
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(a) Annual Returns of Fixed Income Arbitrage Funds

(b) Distribution of Monthly Returns of Fixed Income Arbitrage Funds

Figure 5: Returns of Fixed Income Arbitrage Funds.

(a) illustrates historical annual returns of fixed income arbitrage funds. (b) shows the

probability distribution of the monthly returns of fixed income arbitrage funds coupled

with its corresponding normal distribution.
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